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Abstract

This report is structured into two parts, each encompassing an aspect of Operations Research.
In the first part, we delve into the duality of integer linear programs using the Rockafellar
perturbation-duality scheme. The second part focuses on the numerical evaluation of a
cutting plane algorithm applied to a class of generalized convex problems. Through these
two distinct parts, we explore both theoretical insights and practical applications.
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Introduction

Ce rapport comportent deux parties distinctes. Dans la première partie, on étudie la dualité
des programmes linéaires en nombres entiers à l’aide du schéma de perturbation-dualité de
Rockafellar. Dans la deuxième partie, nous testons numériquement un algorithme de plans
coupants sur des problèmes parcimonieux en convexité généralisée.

Partie 1 : Schéma de perturbation-dualité en optimisation combina-
toire

Les résultats de dualité en programmation linéaire continue sont bien connus et largement
utilisés dans des méthodes de résolution — comme par exemple l’algorithme du simplexe dual
dans un «branch-and-cut» ou en programmation bi-niveau. Il n’en va pas de même pour les
résultats de dualité en programmation linéaire en nombres entiers (PLNE) qui restent plus
méconnus et peu, voire pas, utilisés. Dans [19], Jeroslow a introduit, pour un programme
PLNE, un problème dual sous-additif qui possède la propriété de dualité forte avec le PLNE
d’origine et les conditions de complémentarité sur les solutions que l’on appelle usuellement
«primales-duales».

Avant d’aller plus loin, il faut préciser ce qu’on entend par «dualité». En cours de pro-
grammation linéaire au MPRO, la «dualité» d’un programme linéaire est présentée sous la
forme d’un autre programme linéaire, obtenu en appliquant certaines règles de calcul au
programme linéaire initial. La «dualité» dans le schéma de perturbation-dualité de Rock-
afellar, que (nous allons présenter dans le Chapitre 1) correspond à un couplage c : U ×V →
R ∪ {−∞,+∞} entre un espace primal U et un espace dual V . Cette deuxième notion
de «dualité», que nous allons adopter pour le reste du rapport, permet de récupérer la
première notion de «dualité» d’un programme linéaire continue: on applique le schéma de
perturbation-dualité au programme linéaire d’origine, avec une perturbation du membre de
droite des constraintes et le produit scalaire 〈·, ·〉 : Rm × Rm → R comme couplage.

L’enjeu et la contribution de cette première partie du rapport est d’appliquer la méthodolo-
gie du schéma de perturbation-dualité de Rockafellar à la PLNE, d’étudier ce que cette
méthodologie systématique apporte à la compréhension de la dualité en PLNE, et de retrou-
ver notamment le programme dual que Jeroslow a défini.
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Partie 2 : Algorithmes en convexité généralisée

En convexité généralisée, le produit de dualité est remplacé par un couplage c, la conjugaison
de Fenchel est remplacée par la conjugaison associée au couplage. Les fonctions convexes
fermées sont remplacées par des fonctions c-convexes, ( définies comme des fonctions égales
à leurs biconjuguées) [25]. Ce domaine a principalement fait l’objet de travaux théoriques
[28, 32, 35] et, plus rarement, d’approches algorithmiques [28, Chapitre 9], [32, Chapitre
9]. Des travaux récents [8] sur la pseudonorme `0 ont mis en lumière un couplage et une
conjugaison, dits E-Capra, qui pourraient ouvrir la voie à l’application d’algorithmes de
convexité généralisée à l’optimisation parcimonieuse.

Dans ce contexte, nous avons défini, en convexité généralisée, la distance de Bregman pour
un couplage quelconque et l’opérateur proximal pour les couplages unilatéralement linéaires
(OSL) qui permettraient de généraliser les méthodes proximales de la convexité ordinaire.
D’autre part, nous avons implémenté et adapté la méthode des plans coupants abstrait à des
problèmes E-Capra convexes et nous avons testé son efficacité sur trois problèmes E-Capra
spécifiques.

Plan et contributions personnelles

Dans le Chapitre 1 nous présentons le schéma de perturbation-dualité de Rockafellar et com-
ment la «relaxation Lagrangienne» (que nous appelons relaxation «Geoffrion Lagrangienne»)
peut être interprétée comme un schéma de perturbation-dualité.

Dans le Chapitre 2, nous présentons les résultats sur la dualité des PLNE de Jeroslow
et nous les retrouvons en appliquant appliquant cinq schémas de perturbations-dualité à la
PLNE. Notre contribution se trouve :

• dans les Tableaux 2.1, 2.2, 2.3 et 2.4 qui résument notre application des cinq schémas
à la PLNE ;

• dans la Proposition 2.11, où nous exhibons un lien entre les conditions de complémen-
tarité des schémas avec le sous-différentiel sous-additive de la fonction valeur ;

• dans la Proposition 2.19, où nous donnons l’exemple d’un nouveau programme dual
quasi-affine.

Dans le Chapitre 3, nous appliquons la méthodologie du schéma de perturbation-dualité
à des problèmes linéaires en variables binaires. Nous traitons le cas particulier du problème
du sac à dos. Notre contribution se trouve

• dans la Proposition 3.6 où nous établissons un résultat de dualité forte pour un PLNE
où seule une partie des contraintes est perturbée (similairement à la relaxation La-
grangienne «à la Geoffrion» mais avec un nouvel espace dual).

Dans le Chapitre 4, nous présentons des algorithmes d’optimisation globale appliquées à la
minimisation de fonction convexes abstraites. On y retrouve la méthode des plans coupants,
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le «branch-and-bound» et la recherche tabou. Nous présentons aussi une généralisation de
l’opérateur proximal pour les couplages dits OSL (One Sided Linear). Notre contribution se
trouve

• dans les six tableaux de §4.2.1 où nous rassemblons une étude systématique de la
conjugaison OSL.

Dans le Chapitre 5, nous présentons la conjugaison E-Capra (un cas particulier d’OSL),
trois problèmes E-Capra, l’adaptation des plans coupants à ces problèmes et les résultats
numériques de nos expériences numériques. Notre contribution se trouve

• en la production d’un code Julia de résolution de ces trois problèmes décrit en §5.2;

• en la génération par un code Julia d’instances des problèmes décrit en §5.3.1;

• en la présentation des résultats numériques en §5.3.2 et §5.3.3 qui tendent à montrer
que la méthode de plans coupants convergent pour des problèmes d’optimisation parci-
monieux et sont prometteurs, en particulier pour le problème du spark d’une matrice
(voir la Figure 5.3.4).
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Part I

Perturbation-duality scheme in
combinatorial optimization
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Chapter 1

The Rockafellar perturbation-duality
scheme

In §1.1, we present the framework of the perturbation-duality scheme with coupling. In §1.2,
we show how the perturbation-duality scheme covers the well-known ‘Geoffrion Lagrangian
relaxation’.

1.1 Perturbation-duality scheme with generalized cou-
pling

Introduced in 1974 in its modern form by Rockafellar [30], the goal of the perturbation-duality
scheme is to define a framework that allows to systematically produce a dual optimization
problem from a given optimization problem. This framework relies on the choice of per-
turbation of the original problem and on the choice of a coupling between the perturbation
space and a dual space.

While Rockafellar was considering bilinear couplings (basically the scalar product of Rn
and the Fenchel conjugacy), Balder considered general couplings [1] which linked the notions
of weak and strong duality with the one of abstract convexity obtained by a coupling (also
see [34, 32]).

In §1.1.1, we outline each step of the perturbation-duality scheme with general coupling.
In §1.1.2, we sum-up in a table the usual functions of the perturbation-duality scheme.

1.1.1 Outline of the general perturbation-duality scheme

Here we present an outline of the scheme and sum up the usual objects encountered in the
scheme. We remind that R = R ∪ {−∞,+∞} and that the Moreau additions u, ·+ extend
the usual addition over R× R by

(+∞)u (−∞) = (−∞)u (+∞) = +∞ , (1.1a)
(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ . (1.1b)
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Original optimization problem

The perturbation-duality scheme is applied to an minimization problem

inf
w∈W

h(w) , (1.2)

defined by some set W and an objective function h :W → R.

Perturbation of the original problem by Rockafellian

We first choose a perturbation of the original minimization problem (1.2). To do so, we intro-
duce a Rockafellian R :W ×U → R that will represent the perturbation. The perturbation
is parametrized by a (primal-)perturbation set U .

Definition 1.1 ([31]). We say that the bivariate function R :W×U → R is a Rockafellian
for the original minimization problem (1.2) if there is ū ∈ U , called anchor, such that

h(w) = R(w, ū) , ∀w ∈ W . (1.3)

Thus, we obtain a family of perturbed minimization problems {infw∈W R(w, u)}u∈U such
that infw∈W R(w, ū) is the original minimization problem (1.2).

The perturbation function

As the original minimization problem (1.2) has been parametrized by the elements of the
set U , we can consider the value of the minimization problem for each perturbation u ∈ U .
This leads to the definition of the perturbation function.

Definition 1.2. For a given Rockafellian R : W × U → R of the original minimization
problem (1.2), the function ϕ : U → R defined by

ϕ(u) = inf
w∈W

R(w, u) , ∀u ∈ U , (1.4)

is called the perturbation function.

Coupling the perturbation set with a dual set

Now that the perturbation of the original problem has been set, the last choice that needs
to be made to define a dual problem of (1.2) is the choice of the coupling c : U × V → R
between the perturbation set U and a dual set V .

It is worth noting that we do not assume any structure on the perturbation and dual
sets, nor on the coupling function c.
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Lagrangian function and dual function

Two other functions of the perturbation-duality scheme are the Lagrangian function and the
dual function. We refer the reader to [11] for a study of the duality between Rockafellians
and Lagrangians.

Definition 1.3.

• For a given Rockafellian R : U → R of the minimization problem (1.2) and a given
coupling c : U ×V → R, we call the Lagrangian function the function L :W ×V → R
defined by

L(w, v) = inf
u∈U

{
R(w, u)u

(
−c(u, v)

)}
, ∀w ∈ W , ∀v ∈ V . (1.5a)

• For a given Rockafellian R : U → R of the minimization problem (1.2) and a given
coupling c : U × V → R, we call the dual function the function Ψ : V → R defined by

Ψ(v) = inf
w∈W
L(w, v) , ∀v ∈ V . (1.5b)

The dual objective function and the dual problem

We can now introduce the dual problem given by the dual objective function defined by the
Rockafellian and the coupling.

Definition 1.4.

• For a given Rockafellian R : W × U → R of the original minimization problem (1.2)
with an anchor ū ∈ U , and a given coupling c : U × V → R, we call dual objective
function the function Φū : V → R defined by

Φū(v) = c(ū, v) ·+ (−ϕc(v)) , ∀v ∈ V . (1.6a)

• The generalized maximization dual problem is

sup
v∈V

Φū(v) = sup
v∈V

c(ū, v) ·+ (−ϕc(v)) . (1.6b)

Generalized weak and strong duality

Now that we have introduced the generalized maximization dual problem (1.6b), we can
define the notions of weak and strong duality using the definition of c-convexity.

By properties of biconjugates (A.10) , we have that

sup
v∈V

Φū(v) = ϕcc
′
(ū) ≤ ϕ(ū) = inf

w∈W
h(w) , (1.7)

thus giving weak duality. Furthermore, if the perturbation function ϕ is c-convex at ū, which
means ϕcc′(ū) = ϕ(ū) according to Definition A.6, we have strong duality.
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1.1.2 Summary of the perturbation-duality scheme functions

Here we sum up the functions that arise in the perturbation-duality scheme and the relations
between them. The Table 1.1 is taken from [11, Table 3], where the proofs of the properties
are also given. We have added the dual objective function.

bivariate functions univariate functions definition property
Rockafellian

R :W ×U → R
Lagrangian L(w, v) =

L :W ×V → R infu∈U
{
R(w, u)u

(
−c(u, v)

)}
−L(w, ·) =

(
R(w, ·)

)c
perturbation
ϕ : U → R ϕ(u) = infw∈W R(w, u)

dual
Ψ : V → R Ψ(v) = infw∈W L(w, v) −Ψ = ϕc

dual objective

Φū : V → R Φū(v) = c(ū, v) ·+ (−ϕc(v))
Φū(v) = c(ū, v) ·+ Ψ(v)
ϕcc

′
(ū) = supv∈V Φū(v)

Table 1.1: Functions in the perturbation-duality scheme

1.2 Hidden perturbation-duality scheme in Geoffrion La-
grangian relaxation

In §1.2.1, we provide a simple background on the so-called Geoffrion Lagrangian relaxation.
Then, in §1.2.2 we show that the Geoffrion Lagrangian relaxation is a special case of the
perturbation-duality scheme.

1.2.1 Background on Geoffrion Lagrangian relaxation

In 1974, Geoffrion published his seminal article [14] where he coined the term ‘Lagrangian
relaxation’ for the following method. We consider a pure integer linear program with con-
straints split in two blocks

αPILP = inf
x

〈k, x〉 ,
s.t. Ax = b̄ ,

Ãx = b̃ ,
x ∈ Zn+ ,

(1.8)

where k ∈ Qn, A ∈ Qm×n, Ã ∈ Qm̃×n, b̄ ∈ Qm and b′ ∈ Qm̃. We relax the first block of
constraint using a Lagrangian multiplier λ ∈ Rm, thus defining a concave function g : Rm →
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R , which Geoffrion called ‘Lagrangian function’ 1, given by

g(λ) = inf
x

〈k, x〉+
〈
λ, b̄− Ax

〉
,

s.t. Ãx = b̃ ,
x ∈ Zn+ .

(1.9)

For every λ ∈ Rm, the quantity g(λ) gives a lower estimate of the value αPILP of the
PILP (1.8). Furthermore, if we look for the best one, that means supλ∈Rm g(λ), we get a
potentially better lower estimate than the continuous relaxation, as stated by the following
theorem.

Theorem 1.5. [14, Theorem 1] [10, Theorem 8.2] Suppose that the PILP (1.8) is feasible.
If we denote αLP the value of the continuous relaxation of the PILP (1.8), which is the
PILP (1.8) where x ∈ Zn+ have been replaced by x ∈ Rn+, then

αLP ≤ sup
λ∈Rm

g(λ) = inf
{
〈k, x〉

∣∣Ax = b̄ , x ∈ co{x ∈ Zn+|Ãx = b̃}
}
≤ αPILP , (1.10)

where co denotes the convex closure of a set.

Furthermore, as the function g is concave, we can apply subgradient descent methods to
compute supλ∈Rm g(λ). For a review of the history of Geoffrion Lagrangian relaxation and
of the recent advancements to compute its optimal value we refer the reader to [6].

1.2.2 Comparison of Geoffrion Lagrangian relaxation and general-
ized perturbation-duality scheme

Now, we show that the Geoffrion Lagrangian relaxation is a special case of the perturbation-
duality scheme, and that the Geoffrion Lagrangian function is in fact the dual objective
function from the perturbation-duality scheme presented in Table 1.1.

Proposition 1.6. The Geoffrion Lagrangian function g : Rm → R (1.9) coincides with the
dual objective function given by the Rockafellian R : Zn+ ×Qm → R given by

R(x, b) = 〈k, x〉u δAx=b̄ u δÃx=b̃ , ∀(x, b) ∈ Z
n
+ ×Qm , (1.11)

and the coupling c : Qm × Rm → R given by

c(b, λ) = 〈b, λ〉 , ∀(b, λ) ∈ Qm × Rm . (1.12)

Proof. We prove that g(λ) = Φb̄(λ), ∀λ ∈ Rm, where the dual objective function Φb̄ is given
by the Rockafellian (1.11) and the coupling (1.12) .

1This terminology is confusing as the Lagrangian function already exists in the perturbation-duality
scheme. Thus when we refer to Geoffrion’s ‘Lagrangian function’, we say Geoffrion Lagrangian function.
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We have, for λ ∈ Rm,

Φb̄(λ) = c(b̄, λ) ·+
(
−ϕc(λ)

)
, (by 1.6a)

=
〈
b̄, λ

〉
·+
(
− sup

b∈Qm

{
〈b, λ〉 ·+

(
− inf

x∈Zn+

{
〈k, x〉u δAx=b u δÃx=b̃

})})
,

(by Definition 1.2 and (A.8))

=
〈
b̄, λ

〉
·+
(
− sup

b∈Qm

{
〈b, λ〉 ·+ sup

Ãx=b̃
x∈Zn+

{
−〈k, x〉 ·+ −δAx=b

}})
,

(as − inf(·) = sup(−·) and −(αu β) = (−α) ·+ (−β))

=
〈
b̄, λ

〉
·+
(
− sup

Ãx=b̃
x∈Zn+

{
sup
b∈Qm

{
〈b, λ〉 − 〈k, x〉 ·+ −δAx=b

}})
,

(by switching the two sup)

=
〈
b̄, λ

〉
·+
(
− sup

Ãx=b̃
x∈Zn+

{
〈Ax, λ〉 − 〈k, x〉

})
,

= inf
Ãx=b̃
x∈Zn+

{
〈k, x〉+

〈
b̄− Ax, λ

〉}
, ( as ·+= + as all terms take finite values)

= g(λ) . (by the definition of the function g (1.9))

Thus, the generalized perturbation-duality scheme covers the Geoffrion Lagrangian re-
laxation, while offering a larger variety of dual elements. Indeed, in the Geoffrion Lagrangian
relaxation, the dual elements are the Lagrangian multipliers in Rm, while the perturbation-
duality scheme allows for more general dual elements by considering dual spaces ‘larger’
than Rm (for instance subadditive functions as we will see in Chapter 2).

It is worth to note that Geoffrion Lagrangian relaxation and the generalized perturbation-
duality scheme serve the same purpose: to produce a dual problem that will give a lower
estimate of the value of an minimization PILP. The value of this lower estimate should be
as tight as possible to the PILP value.

Geoffrion Lagrangian relaxation is used to get a gap tighter than the continuous relaxation
(which is a special case of Geoffrion Lagrangian relaxation) as we can see by rewriting loosely
the inequations (1.10),

continuous relaxation value ≤ sup of Geoffrion Lagrangian function ≤ PILP value .

The generalized perturbation-duality schemes goes one step further, if the Rockafellian R and
the coupling c are chosen such that the scheme they define covers the Geoffrion Lagrangian
relaxation and includes other dual elements than the linear functions {〈·, λ〉}λ∈Rn , then the
supremum of the dual objective function potentially yields a tighter gap,

sup of Geoffrion Lagrangian function ≤ sup of dual objective function ≤ PILP value .
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Chapter 2

Perturbation-duality scheme for pure
integer linear programming (PILP)

When solving a mixed integer linear program (MILP), branch-and-cut algorithm is the staple
method implemented by every MILP solver. Basically, for a minimizing program, branch-
and-cut is an enumeration method that takes the form of a research tree keeping track of
a lower bound and an upper bound of the optimal value of the MILP. The upper bound is
updated when an integral feasible solution is found, while the lower bound is updated at nodes
when a surrogate problem minimizing the original problem is solved. As branches of the
tree can be pruned if the lower bound computed at a node is greater than the current upper
bound, the tightness of the surrogate problems is crucial to speed up the enumeration. Thus,
studying dual problems of MILPs comes naturally to design surrogate problems for branch-
and-cut, as dual problems are, by essence, lower approximation of the original problem. In
§2.1, we introduce the subadditive dual problem of a PILP, which the analog of the usual
dual of linear programming (LP) but for PILP, and present the result of Blair and Jeroslow
[5] restricting the elements of the subadditive dual problem to Chvátal functions. In §2.2,
we rewrite these classical results into the framework of the generalized perturbation-duality
scheme we presented in Chapter 1. In §2.3, we focus on the linear couplings introduced in
§2.2. In §2.4, we discuss the results and branch out with other perturbation-duality scheme
ideas.

2.1 The subadditive dual problem of PILP
For an extensive review of integer programming duality, we refer the reader to [17]. In §2.1.1,
we present the subadditive dual problem of a PILP where the dual elements are subadditive
functions. In §2.1.1, we present the result of Blair and Jeroslow who state that we can
restrict the subadditive function space to the Chvátal function space in the subadditive dual
problem.
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2.1.1 Definition of the subadditive dual problem of PILP

We consider a perturbed PILP in its standard form (that means with equality constraints).
For that, we define a perturbation function (or value function) GZ : Qm → R. Let A ∈ Qm×n

be a constraint matrix, k ∈ Qn be a cost vector, and consider

∀b ∈ Qm , GZ(b) = inf
x

〈k, x〉
s.t. Ax = b

x ∈ Zn+.
(2.1)

We set an anchor b̄ ∈ Qm and we call GZ(b̄) the value of the original PILP, and the associated
PILP the original PILP.

We choose rational coefficients for the constraints and for the cost as it is done in the
literature [5, 33, 10]. Doing so guarantees convergence of cutting methods such as the
Gomory’s cutting plane method [33, Theorem 23.2].

In 1979, Jeroslow introduced a subadditive dual problem for MILPs and proved strong
duality [19]. We present the PILP version of this subadditive dual problem [5, Theorem
2.15].

Definition 2.1. For an integer m ≥ 1, we call

Sm =
{
F ∈ RQ

m∣∣F (u1 + u2) ≤ F (u1)u F (u2) , ∀u1, u2 ∈ Qm
}
, (2.2)

the (rational) subadditive functional space. Its elements are called subadditive functions.

Theorem 2.2. [19, Theorem 1], [17, Theorem 3] The following subadditive program

sup
F

F (b) ,

s.t. F (Aj) ≤ kj , j = 1, . . . , n ,

F (0) ≤ 0 ,

A(Zn+) ⊂ domF ,

F ∈ Sm ,

(2.3a)

where domF is the effective domain of the function F defined by {b ∈ Qm|S(b) < +∞},
satisfies

1. weak duality: for all feasible x ∈ Zn in the original PILP (2.1) and all feasible F ∈ Sm
in the subadditive dual problem (2.3a), we have the inequality

F (b̄) ≤ 〈k, x〉 ; (2.3b)

2. strong duality: when the original PILP (2.1) is feasible, for all optimal x̂ ∈ Zn in the
original PILP (2.1) and for all optimal F̂ ∈ Sm of the subadditive dual problem (2.3a),
we have the equality

F̂ (b̄) = 〈k, x̂〉 . (2.3c)
Furthermore, the value function GZ in (2.1) is a feasible solution of the subadditive
dual problem (2.3a).
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3. If the original PILP (2.1) (resp., the subadditive dual problem (2.3a)) is unbounded,
then the subadditive dual problem (resp., the original PILP) is infeasible.

4. If the original PILP (2.1) (resp., the subadditive dual problem (2.3a)) is infeasible,
then the subadditive dual problem (resp., the original PILP) is infeasible or unbounded.

Remark 2.3.

1. The constraints of the subadditive dual problem (2.3a) are similar to the constraints of
the usual dual problem of a continuous LP, but the dual variable has been replaced by
a dual subadditive function. In a continuous LP, elements of the dual can be identified
with linear functions.

2. In [19], the subadditive functions were not defined as we did with Sm in Definition 2.1.
In [19], subadditive functions are only defined on A(Zn+) and only take finite values, so
there is no need to use Moreau addition for the definition of subadditive functions.

However in this report, we decided to allow subadditive functions to be defined on Qm, so
that their definition does not rely on the definitions of a particular PILP. As discussed
in Remark 2.10, we want to include the value function GZ to the dual space, so we
have to allow the functions of the dual space to take infinite values as possibly do the
value function GZ. Thus, the upper u Moreau addition is needed in Definition 2.1 of
subadditive functions to sum −∞ and +∞.

Moreover, Jeroslow also obtained complementary slackness conditions in [18, Equa-
tion 2.4.C].

Theorem 2.4. [18, Equation 2.4.C],[17, Theorem 4] Let us denote a1, . . . , anthe columns
of A = [a1 . . . an] ∈ Qm×n. Let x ∈ Zn+ and F ∈ Sm be feasible points of, respectively, the
original PILP (2.1) and the subadditive program (2.3a).

Then the integer vector x and the proper subadditive function F are optimal iff

xj
(
kj − F (aj)

)
= 0 , ∀j = 1, . . . , n , (2.4a)

n∑
j=1

F (aj)xj = F (b̄) . (2.4b)

2.1.2 Blair’s and Jeroslow’s result

In their 1982 paper [5], Blair and Jeroslow strenghtened Theorem 2.2 by restricting the
subadditive functional space Sm in (2.3a) to a smaller space of subadditive functions called
Chvátal functions.

Definition 2.5.
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• The Gomory function space Gm is the intersection of all sets E ⊂ RQ
m

satisfying(
u ∈ Qm 7→ 〈v, u〉

)
∈ E , ∀v ∈ Qm , (2.5a)

αF1 + βF2 ∈ E , ∀F1, F2 ∈ E , (2.5b)
dF e ∈ E , ∀F ∈ E , (2.5c)

max{F1, F2} ∈ E , ∀F1, F2 ∈ E , (2.5d)

where, for any set W and any real valued function H :W → R, the ceiling function d·e
is defined by

dHe(w) = inf
{
k ∈ Z

∣∣H(w) ≤ k
}
, ∀w ∈ W ; (2.5e)

• the Chvátal function space Cm ⊂ Gm is the intersection of all sets E satisfying (2.5a),
(2.5b), (2.5c).

Theorem 2.6. [5, Theorem 5.1, Theorem 5.2] If the original PILP (2.1) is feasible, there is
a Gomory function which is the optimal solution of the subadditive dual problem(2.3a) and
which satisfies strong duality.

Furthermore, there is a Gomory function F ∈ Gm such that the original PILP (2.1) is
feasible iff F (b̄) ≤ 0.

Theorem 2.7. [5, Theorem 5.1, Theorem 5.2, Proposition 2.18] If the original PILP (2.1)
is feasible, there is a Chvátal function which is the optimal solution of the subadditive dual
problem(2.3a) and which satisfies strong duality.

Furthermore, there is a Chvátal function F ∈ Cm such that the original PILP (2.1) is
feasible iff F (b̄) ≤ 0.

2.2 Rewriting PILP duality results in the perturbation-
duality framework

In §2.2.1, we introduce the perturbation space, Rockafellian and perturbation function which
are common to all the five schemes we will consider. In §2.2.2, we present five couplings which
are divided into three evaluation couplings and two linear couplings. In §2.2.3, we write the
Lagrangians and the dual functions for each scheme (see Table 1.1 for their definitions). In
§2.2.4, we present the dual problems resulting from each scheme. In §2.2.5, we present the
subdifferentials of the perturbation function for each scheme and their link with comple-
mentary slackness. In §2.2.6, we cover the case of canonical PILP (that means PILP with
inequality constraints).

2.2.1 Rockafellian and perturbation function

To begin the presentation of the schemes, we introduce a Rockafellian, which will be the
same for each of the schemes.
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Primal perturbation space and Rockafellian

Throughout this chapter, the primal perturbation space is U = Qm and the Rockafellian
R : Zn+ ×Qm → R is given by

R(x, b) = 〈k, x〉+ δ{0}(Ax− b) , ∀x ∈ Zn+ , ∀b ∈ Qm . (2.6)

Let b̄ ∈ Qm be its anchor.

Perturbation function (value function)

Following Definition 1.2, the perturbation function GZ : Qm → R of the original PILP (2.1)
(or value function in this case as named in [5]) is given by

GZ(b) = inf
x∈Zn+

R(x, b) = inf
x∈Zn+

{
〈k, x〉+ δ{0}(Ax− b)

}
, ∀b ∈ Qm . (2.7)

2.2.2 Three evaluation couplings and two linear couplings

The couplings are divided in two groups: the (nonlinear) evaluation couplings and the linear
couplings.

Evaluation couplings for PILP

We consider three evaluations couplings with the following dual spaces:

• subadditive functions space Sm, given by Definition 2.1;

• Gomory functions space Gm, given by Definition 2.5 ;

• Chvátal functions space Cm, given by Definition 2.5.

The evaluation couplings corresponding to each of these dual spaces are respectively
denoted

cS : Qm × Sm → R , cG : Qm × Gm → R , cC : Qm × Cm → R , (2.8)

and are defined by

cF(b, F ) = F (b) , ∀F ∈ {Sm,Gm, Cm} , ∀b ∈ Qm , ∀F ∈ F . (2.9)

Linear couplings for PILP

We also consider linear couplings :

• real linear coupling ?R : Qm × Rm → R defined by

?R(b, p) = 〈b, p〉 , ∀b ∈ Qm , ∀p ∈ Rm , (2.10)

here the dual space is Rm;
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• rational linear coupling ?Q : Qm ×Qm → R defined by

?Q(b, p) = 〈b, p〉 , ∀b ∈ Qm , ∀p ∈ Qm , (2.11)

here the dual space is Qm.

Remark 2.8. These linear couplings are restrictions of the usual Fenchel coupling ? : Rm × Rm,
given by ?(b, p) = 〈b, p〉 , ∀b ∈ Rm, p ∈ Rm.

2.2.3 Lagrangians and dual functions

Before defining the dual problems coming for each of these five schemes, let us present
the corresponding Lagrangian function and dual functions. The definitions of Lagrangian
function and dual function are found in Table 1.1,

Lagrangians

Coupling Dual space Lagrangian
Subadditive coupling Sm L : Zn+ × Sm → R

L(x, F ) = 〈k, x〉 − F (Ax)
Gomory coupling Gm L : Zn+ × Gm → R

L(x, F ) = 〈k, x〉 − F (Ax)
Chvátal coupling Cm L : Zn+ × Cm → R

L(x, F ) = 〈k, x〉 − F (Ax)
Rational linear coupling Qm L : Zn+ ×Qm → R

L(x, p) =
〈
k − ATp, x

〉
Real linear coupling Rm L : Zn+ × Rm → R

L(x, p) =
〈
k − ATp, x

〉
Table 2.1: Lagrangians for each of the five perturbation-duality schemes

Proof. Let us prove the formulas of the Lagrangians, by identifying Qm and Rm with linear
functions spaces.

Let x ∈ Zn+, F ∈ F , where F ∈ {Sm,Gm, Cm,Qm,Rm}. Then the Lagrangian is given by

L(x, F ) = inf
b∈Qm

{
R(x, b)u

(
−c(b, F )

)}
, (according to Table 1.1)

= inf
b∈Qm

{
〈k, x〉u δ{0}(Ax− b)u

(
−F (b)

)}
, (by (2.6) and (2.8))

= 〈k, x〉u inf
b∈Qm

{
δ{0}(Ax− b)u

(
−F (b)

)}
,

= 〈k, x〉u
(
−F (Ax)

)
, (as Ax 6= b ⇐⇒ δ{0}(Ax− b) = +∞)

= 〈k, x〉 − F (Ax) .
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In the special case where there is p ∈ Qm or p ∈ Rm such that, we get that F = 〈p, ·〉

L(x, p) = 〈k, x〉 − 〈p, Ax〉 =
〈
k − ATp, x

〉
.

This concludes the proof.

Dual functions

Coupling Dual space Dual function
Subadditive coupling Sm Ψ : Sm → R

Ψ(F ) = infx∈Zn+
{
〈k, x〉 − F (Ax)

}
Gomory coupling Gm Ψ : Gm → R

Ψ(F ) = infx∈Zn+
{
〈k, x〉 − F (Ax)

}
Chvátal coupling Cm Ψ : Cm → R

Ψ(F ) = infx∈Zn+
{
〈k, x〉 − F (Ax)

}
Rational linear coupling Qm Ψ : Qm → R

Ψ(p) = −δRn+(k − ATp)
Real linear coupling Rm Ψ : Rm → R

Ψ(p) = −δRn+(k − ATp)

Table 2.2: Dual functions for each of the five perturbation-duality scheme

Proof.

• The formulas of the dual functions for the evaluation couplings come directly from the
definition of a dual function in Table 1.1.

• For p ∈ Rm, we have

Ψ(p) = inf
x∈Zn+

〈
k − ATp, x

〉
, (by definition of a dual function, see Table 1.1)

= inf
x∈coZn+

〈
k − ATp, x

〉
,

= inf
x∈Rn+

〈
k − ATp, x

〉
,

= −δRn+(k − ATp) ,

which concludes the proof.
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2.2.4 Dual problems

We can now define the dual problems coming from the schemes, using the definition of the
dual objective function Φb̄(F ) = F (b̄) ·+ Ψ(F ) from the Table 1.1. We remind that b̄ ∈ Qm

is the anchor of the Rockafellian (2.6).

Coupling Dual space Dual problem

Subadditive coupling Sm

Formulation 1:
GZ

cScS
′
(b̄) = supF∈Sm

{
F (b̄) ·+ inf

b∈Qm

{
GZ(b)u

(
−F (b)

)}}
Formulation 2:
GZ

cScS
′
(b̄) = supF∈Sm

{
F (b̄) ·+ infx∈Zn+

{
〈k, x〉 − F (Ax)

}}

Gomory coupling Gm

Formulation 1:
GZ

cGcG
′
(b̄) = supF∈Gm

{
F (b̄) + inf

b∈Qm

{
GZ(b)− F (b)

}}
Formulation 2:
GZ

cGcG
′
(b̄) = supF∈Gm

{
F (b̄) + infx∈Zn+

{
〈k, x〉 − F (Ax)

}}

Chvátal coupling Cm

Formulation 1:
GZ

cCcC
′
(b̄) = supF∈Cm

{
F (b̄) + inf

b∈Qm

{
GZ(b)− F (b)

}}
Formulation 2:
GZ

cCcC
′
(b̄) = supF∈Cm

{
F (b̄) + infx∈Zn+

{
〈k, x〉 − F (Ax)

}}

Rational linear coupling Qm

Formulation 1:
GZ

?Q?Q
′
(b̄) = supp∈Qm

{
F (b̄) + inf

b∈Qm

{
GZ(b)− 〈b, p〉

}}
Formulation 2:
GZ

?Q?Q
′
(b̄) = sup

AT p≤k
p∈Qm

〈
b̄, p
〉

Real linear coupling Rm

Formulation 1:
GZ

?R?R
′
(b̄) = supp∈Rm

{
F (b̄) + inf

b∈Qm

{
GZ(b)− 〈b, p〉

}}
Formulation 2:
GZ

?R?R
′
(b̄) = sup

AT p≤k
p∈Rm

〈
b̄, p
〉

Table 2.3: Dual problems for each of the five perturbation-duality scheme
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Proposition 2.9. The perturbation function GZ satisfies the following strong duality results:

1. GZcScS
′
= GZ, which means that the function GZ is cS-convex; furthermore, there exists

a subadditive function F ∈ Sm such that GZ(b̄) = F (b̄), for all vector b̄ ∈ Qm;

2. if GZ(0) > −∞, then GZ
cGcG

′
(b̄) = GZ(b̄), for all vector b̄ ∈ dom GZ, which means

that the function GZ is cG-convex on domGZ; furthermore, there exists a Gomory
function H ∈ Gm such that GZ(b̄) = H(b̄), for all vector b̄ ∈ dom GZ ;

3. if GZ(0) > −∞, then GZcCcC
′
(b̄) = GZ(b̄), for all vector b̄ ∈ dom GZ, which means that

the function GZ is cC-convex on domGZ; furthermore, for all vector b̄ ∈ dom GZ, there
exists a Chvátal function Hb̄ ∈ Cm such that GZ(b̄) = Hb̄(b̄).

Proof. 1. We prove GZcScS
′

= GZ. As the inequality GZcScS
′ ≤ GZ is true according to

Proposition A.5, we have to prove GZcScS
′ ≥ GZ.

Let b̄ ∈ Qm. We have that

GZ
cScS

′
(b̄) = sup

F∈Sm

{
F (b̄) ·+ inf

b∈Qm

{
GZ(b)u

(
−F (b)

)}}
,

(according to Formulation 1 in Line 1 in Table 2.3)
≥GZ(b̄) ·+ inf

b∈Qm

{
GZ(b)u

(
−GZ(b)

)}
,

(as it is easy to check that the value function GZ ∈ S is subadditive)
≥GZ(b̄) . (as inf

{
GZ(b)u

(
−GZ(b)

)}
≥ 0, according to (A.5d))

Thus, we have proven 1.

2. Similarly to 1, we just have to prove that GZcGcG
′
(b̄) ≥ GZ(b̄), for all vector b̄ ∈

domGZ ⊂ Qm.

Let b̄ ∈ domGZ. Let H ∈ Gm ⊂ RQm be the Gomory function that coincides with the
value function GZ on its domain domGZ [5, Theorem 5.2]. We have that,

GZ
cGcG

′
(b̄) = sup

F∈Gm

{
F (b̄) ·+ inf

b∈Qm

{
GZ(b)− F (b)

}}
,

(according to Formulation 1 in Line 2 in Table 2.3)
≥H(b̄) ·+ inf

b∈Qm

{
GZ(b)−H(b)

}
, (as H ∈ Gm)

≥H(b̄) , (as GZ(b) = H(b), for all b ∈ domGZ)
≥GZ(b̄) . (as b̄ ∈ domGZ =⇒ GZ(b̄) = H(b̄))

Thus, we have proven 2.
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3. Following the same arguments, we have to prove that GZcCcC
′
(b̄) ≥ GZ(b̄), for all vector

b̄ ∈ domGZ ⊂ Qm.

Let H ∈ Gm ⊂ RQm be the Gomory function that coincides with the value function GZ
on its domain domGZ.

Let b̄ ∈ domGZ. According to [5, Proposition 2.18], there exists a Chvátal functionHb̄ ∈
Cm such that H(b̄) = Hb̄(b̄). We have that

GZ
cCcC

′
(b̄) = sup

F∈Cm

{
F (b̄) ·+ inf

b∈Qm

{
GZ(b)− F (b)

}}
,

(according to Formulation 1 in Line 23in Table 2.3)
≥Hb̄(b̄) ·+ inf

b∈Qm

{
GZ(b)−Hb̄(b)

}
, (as Hb̄ ∈ Cm)

≥Hb̄(b̄) , (as Hb̄(b̄) = H(b̄) = GZ(b̄))
≥GZ(b̄) . (as Hb̄(b̄) = H(b̄) = GZ(b̄))

Thus we have proven 3.

Remark 2.10.

1. In the proof of Proposition 2.9, the strong duality essentially comes from the following
property: the perturbation function (here GZ) coincides with a function in the dual
space (here S,G or C) on its domain. Thus, in order to get strong duality with an
evaluation coupling, we can distinguish two extreme cases for the choice of the dual
space F : we could take F = {GZ} containing only the perturbation function, or we
could take F = RR

m

containing every function from Rm to R. In the first case, the
dual space is too ‘small’ as we do not usually know the perturbation function. In the
second case, the dual space is too ‘big’ as every perturbation function in every point
would be c-convex.

2. Looking at the formulation 2 in the first line of Table 2.3, we see that we implicitly re-
trieved the constraint A(Zn+) ⊂ domF from Jeroslow’s subadditive dual problem (2.3a).
Indeed, if Ax /∈ domF , then infx∈Zn+

{
〈k, x〉 − F (Ax)

}
= −∞. However, we still do

not have the constraints F (Aj) ≤ kj , F (0) ≤ 0 from Jeroslow’s subadditive dual
problem (2.3a). For them, we need to look at the cS-subdifferential of the perturbation
function GZ in §2.2.5.

2.2.5 Generalized subdifferentials of the perturbation function

To complete the study of PILP through the perturbation-duality scheme, we address the link
between the complementary slackness conditions and the subdifferential of the perturbation
function. More generally speaking, the subdifferential of the perturbation function is linked
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to the abstract Karush-Kuhn-Tucker conditions(see [30, Section 7, Section 10]), when the
optimization space is paired to another space by a coupling (here the optimization variable
is x ∈ Zn and Zn is paired with Qn by the scalar product). 〈k, x〉 ).

Coupling Subdifferential Characterization (1) Subdifferential Characterization (2)

cS F ∈ ∂cSGZ(b̄) ⊂ Sm ⇐⇒ F ∈ ∂cSGZ(b̄) ⊂ Sm ⇐⇒
GZ(b̄) = F (b̄) ·+ inf

b∈Qm

{
GZ(b)u

(
−F (b)

)}
GZ(b̄) = F (b̄) ·+ inf

x∈Zn+

{
〈k, x〉 − F (Ax)

}
cG F ∈ ∂cGGZ(b̄) ⊂ Gm ⇐⇒ F ∈ ∂cGGZ(b̄) ⊂ Gm ⇐⇒

GZ(b̄) = F (b̄) + inf
b∈Qm

{
GZ(b)− F (b)

}
GZ(b̄) = F (b̄) + inf

x∈Zn+

{
〈k, x〉 − F (Ax)

}
cC F ∈ ∂cCGZ(b̄) ⊂ Cm ⇐⇒ F ∈ ∂cCGZ(b̄) ⊂ Cm ⇐⇒

GZ(b̄) = F (b̄) + inf
b∈Qm

{
GZ(b)− F (b)

}
GZ(b̄) = F (b̄) + inf

x∈Zn+

{
〈k, x〉 − F (Ax)

}
?Q p ∈ ∂?QGZ(b̄) ⊂ Qm ⇐⇒ p ∈ ∂?QGZ(b̄) ⊂ Qm ⇐⇒

GZ(b̄) =
〈
b̄, p
〉
·+ inf
b∈Qm

{
GZ(b)− 〈p, b〉

}
GZ(b̄) =

〈
b̄, p
〉

+ δRn+(k − ATp)

?R p ∈ ∂?RGZ(b̄) ⊂ Rm ⇐⇒ p ∈ ∂?RGZ(b̄) ⊂ Rm ⇐⇒
GZ(b̄) =

〈
b̄, p
〉
·+ inf
b∈Qm

{
GZ(b)− 〈p, b〉

}
GZ(b̄) =

〈
b̄, p
〉

+ δRn+(k − ATp)

Table 2.4: Subdifferential characterization for each of the five perturbation-duality scheme

Proposition 2.11. Let GZ be the perturbation function of the PILP (2.1) defined by k ∈ Qn,
A =

(
Aj
)
j=1,...,n

∈ Qm×n, and b̄ ∈ Qn. Let x̂ ∈ {x ∈ Zn+|Ax = b̄} and F̂ ∈ Gm. Suppose that
GZ(b̄) = 〈k, x̂〉. Then the following assertions are equivalent:

F̂ ∈ ∂cGGZ(b̄) , (2.12a)

−k ∈ ∂
(
−F̂ ◦ Au δZn+

)
(x̂) . (2.12b)

Furthermore, if F̂ (Aj) ≤ kj, for all ∀j = 1, . . . , n, then the following assertion is equivalent
to (2.12b):

F̂ (0) = 0 , F̂ (b̄) = GZ(b̄) and
(
kj − F̂ (Aj)

)
x̂j = 0 , ∀j = 1, . . . , n . (2.12c)

Proof.

• Let x̂ ∈ {x ∈ Zn+|Ax = b̄} and F ∈ Gm. Suppose that GZ(b̄) = 〈k, x̂〉 Then, we have
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that

F̂ ∈ ∂cGGZ(b̄) ,

⇐⇒ GZ(b̄) ≤ F̂ (b̄) + 〈k, x〉 − F̂ (Ax) , ∀x ∈ Zn+ , (according to Table 2.4)

⇐⇒ 〈k, x̂〉 ≤ F̂ (Ax̂) + 〈k, x〉 − F̂ (Ax) , ∀x ∈ Zn+ , (as GZ(b̄) = 〈k, x̂〉)
⇐⇒ 〈−k, x− x̂〉 − F̂ (Ax̂) ≤ −F̂ (Ax) , ∀x ∈ Zn+ ,

⇐⇒ 〈−k, x− x̂〉 − F̂ (Ax)u δZn+(x) ≤ −F̂ (Ax̂)u δZn+(x) , ∀x ∈ Rn ,

⇐⇒ − k ∈ ∂
(
−F̂ ◦ Au δZn+

)
(x̂) .

• We prove
(
F̂ (Aj) ≤ kj,∀j ∈= 1, . . . , n

)
=⇒

(
(2.12a) ⇐⇒ (2.12c)

)
– It is easy to check that

(
F̂ (Aj) ≤ kj, ∀j ∈= 1, . . . , n

)
=⇒

(
(2.12c) =⇒ (2.12a)

)
– Now we prove the reciprocal implication. Let us notice that

0 ≥ GZ(b̄)− F̂ (b̄) = 〈k, x̂〉 − F̂ (Ax̂) .

Indeed, we have that

〈k, x̂〉 − F̂ (Ax̂) ≤ 〈k, x〉 − F̂ (Ax) , ∀x ∈ Zn+ ,

(as F̂ ∈ ∂cGGZ(b̄) and GZ(b̄) = 〈k, x̂〉)
=⇒ 〈k, x̂〉 − F̂ (Ax̂) ≤ −F̂ (0) ,

=⇒ 〈k, x̂〉 − F̂ (Ax̂) ≤ 0 .

( as F̂ (0) ≥ F (N0)
N
−−−→
N→∞

0, where the limit comes from Fekete’s lemma [21],[12, Proposition IX])

– Suppose F̂ (Aj) ≤ kj,∀j ∈= 1, . . . , n. We have that

n∑
i=1

(
ki − F̂ (Ai)

)
xi ≥ 0 . (by the assumptionF̂ (Aj) ≤ kj,∀j ∈= 1, . . . , n)

Furthermore,

F̂ (Ax̂) ≥
n∑
i=1

(
ki − F̂ (Ai)

)
xi . (by subadditivity of F )

Thus

0 ≥ GZ(b̄)− F̂ (b̄) = 〈k, x̂〉 − F̂ (Ax̂) ≥ 0 ,

which concludes the proof.
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Suppose now that F̂ (Aj) ≤ kj.

Remark 2.12. Thus, we have completed the rewriting of Jeroslow’s subadditive dual prob-
lem (2.3a) and we reinterpret it as follows: in Jeroslow’s subadditive dual (2.3a) the subad-
ditive space is restricted to the subadditive minimizers F of the PILP value function GZ such
that F is a cS upper-subgradient of GZ and coincides with GZ at the anchor b̄.

2.2.6 Case of canonical PILP

Until now, we have considered PILP in its standard form, that means with equality con-
straints. We could have considered PILP in canonical form, that means with inequatlity
constraints:

inf
x

〈k, x〉 ,
s.t. Ax ≥ b,

x ≥ 0,
x ∈ Zn.

(2.13)

Thankfully, the results we have established remain true for the natural corresponding
Rockafellian

R≥(x, b) = 〈k, x〉+ δRn+(b− Ax) + δZn+(x) , ∀b ∈ Qm , ∀x ∈ Rn , (2.14)

by slightly changing the dual spaces according to [5, Theorem 5.17].
To do so, let us introduce for a real valued functional set F ⊂ RR

m

, the set of the
nondecreasing functions F↗ ⊂ F , according to the usual order on Rm. Furthermore, we
identify Qm,Rm respectively with the rational linear functions and the real linear functions.

Perturbation-duality Standard (=) Canonical (≥)
Subadditive Sm Sm↗
Gomory Gm Gm↗
Chvátal Cm Cm↗

Rational linear Qm Qm
↗ = Qm

+

Real linear Rm Rm↗ = Rm+

Table 2.5: Comparison between standard PILP dual spaces and canonical PILP dual spaces

2.3 Linear coupling convexity of the integer value func-
tion

While Proposition 2.9 states that we have cS-, cG- and cC-strong duality between the cor-
responding dual problem and the original PILP under weak assumptions, nothing is said
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about ?Q- and ?R-strong duality. In this section, we discuss why ?Q- and ?R- convexity for
the value function GZ are generally not achieved.

To do so, let us first define the (continuously) relaxed value function GR : Rm → R, given
by

GR(b) = inf
x∈Rn

{
〈k, x〉+ δ{0}(Ax− b)

}
, ∀b ∈ Rm . (2.15)

As indicated by its name, it is the value function of the usual continuous relaxation of the
PILP (2.1).

In §2.3.1, we show that the value of dual problems coming from the ?Q- and ?R couplings
are the same and coincide with the value of the continuous relaxation. In §2.3.2, we show
that there is no better convex lower approximation of the PILP value function GZ than the
value function of the continuous relaxation.

2.3.1 The same dual problem for the linear couplings

Looking at the last two lines of Table 2.3 could give the impression that ?Q and ?R couplings
give two different dual problems when used in the perturbation-duality scheme. It is actually
not the case.

Proposition 2.13. We remind that GZ : Qm → R is the value function of the PILP defined
in (2.1). The ?Q-biconjugate GZ?Q?Q

′
: Qm → R, the ?R-biconjugate GZ?R?R

′
: Qm → R satisfy

GZ
?Q?Q

′
(b) = GZ

?R?R
′
(b) = GR(b) , ∀b ∈ dom GZ . (2.16)

Proof. As
co
(
Qm ∩ {p ∈ Rm|ATp ≤ k}

)
= {p ∈ Rm|ATp ≤ k} ,

properties of support functions give:

GZ
?Q?Q

′
(b) = sup

AT p≤k
p∈Qm

〈p, b〉 = sup
AT p≤k
p∈Rm

〈p, b〉 = GZ
?R?R

′
(b) .

The last inequality follows from the usual strong duality in continuous linear program-
ming.

Thus, there no hope for strong duality with the linear couplings as it is well-known that
the value GR(b̄) of the relaxed problem is usually smaller than the value GZ(b̄) of the PILP.

Example 2.14. [5, Equation (3.20)]
For example, let us consider the following PILP:

GZ(b) = inf
x

x1 − x2

s.t. x1 − x2 − x3 = b
x ∈ Z3

+.

(∀b ∈ Q) (2.17)
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We can easily see that the value function is GZ(b) = dbe , ∀b ∈ Q, and that the relaxed value
function is GR(b) = b , ∀b ∈ Q.

Here, GR(b) = GZ(b) ⇐⇒ b ∈ Z, thus GR(b) < GZ(b) , ∀b ∈ Q \ Z. We see in this
example that strong duality for linear couplings is not achieved.

2.3.2 Best convex approximation of the PILP value function GZ

It is well-known that the relaxed value function GR is convex and is a minimizer of the PILP
value function GZ in the sense GR|Qm ≤ GZ [30, Section 5]. Then we may ask: is there a
better convex lower approximation of GZ? Jeroslow answered no [19, Theorem 2]. Here, we
present another proof of it using conjugacy.

First, we define the best convex lower approximation of a function defined on some set
W ⊂ Rm.

Definition 2.15. Let W ⊂ Rm be a subset and g : W → R be a function. We call the
function coWg the best convex lower approximation of g on W defined by

coWg = sup
h|W≤g

h proper convex lsc

h . (2.18)

Proposition 2.16. Let coQmGZ : Rm → R be the best convex lower approximation of the
value function GZ : Qm → R as defined in (2.18), and GR : Rm → R be the relaxed value
function defined in (2.15). Then (

coQmGZ
)
|Qm = GR|Qm . (2.19)

Proof. We have that

1. for any function f : Rm → R coinciding with the value function GZ in Qm,(
f u δQm

)?
= GZ

?R , because, for any p ∈ Rm, we have that(
f u δQm

)?
(p) = sup

b∈Rm
〈b, p〉 ·+

(
−f(b) ·+ (−δQm(b))

)
,

= sup
b∈Qm

〈b, p〉 ·+
(
−GZ(b)

)
,

= GZ
?R(p) ,

2. GZ?R?R
′|Qm = GZ

?R?|Qm , because for all b ∈ Qm,

GZ
?R?R

′
(b) = sup

p∈Rm
{〈b, p〉 ·+ (−GZ?R(p))} ,

= GZ
?R?(b) . (by definition of the Fenchel conjugate)

3. GZ?R?R
′|Qm = GR|Qm according to Proposition 2.13.

26



Combining all of these results, we get that
(
f u δQm

)??|Qm = GR|Qm , for any function f :

Rm → R coinciding with the value function GZ in Qm. Finally, Lemma 2.17 allow us to
conclude that

(
coQmGZ

)
|Qm = GR|Qm .

Lemma 2.17. Let W ⊂ Rm and g :W → R. Let coWg : Rm → R be the best convex lower
approximation of g defined in (2.18). Then, we have that

coWg =
(
f u δW

)??
, (2.20)

for any function f : Rm → R coinciding with the function g in W.

Proof. Let A ⊂ RRm be the set of affine functions, and f : Rm → R a function coinciding
with the function g in W .

coWg = sup
h|W≤g

h proper convex lsc

h ,

= sup
h|W≤g

h proper convex lsc

sup
p∈A
p≤h

p ,

(as h is proper convex lsc, it is the sup of its affine minorants [2, Corollary 13.42])
= sup

p∈A
sup
h|W≤g

h proper convex lsc
p≤h

p ,

= sup
p∈A

{
−∞ , if p|W � g
p , otherwise ,

(as h|W ≤ g and p ≤ h =⇒ p|W ≤ g and as p is affine, thus proper convex lsc)
= sup

p∈A

{
p ·+ (−δp|W≤g)

}
,

= sup
p∈A
p|W≤g

p ,

= sup
p∈A

p≤fuδW

p , (as p|W ≤ g ⇐⇒ p ≤ f u δW because f coincides with g in W)

=
(
f u δW

)??
.

(because the biconjugate is the best affine minorant approximation at each point [2, Corollary 13.42])

All in all, we cannot do better than the function GR in the proper convex lsc world to
approximate the value function GZ from below. It can be seen in the fact that GZ coincides
with a Gomory function on its effective domain, and as there are integer round-up operations
in its expression, it makes GZ non-convex.
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2.4 Conclusion and discussion
PILP duality and the perturbation-duality scheme

On one hand, Jeroslow provided a subadditive dual problems in [19] for PILP, where the
dual variables belong to the space of subadditive functions. He and Blair proved in [5] that
the space of subadditive functions could be restricted to the space of Gomory functions and
even to the space of Chvátal functions. On the other hand, the perturbation-duality scheme
of Rockafellar presented in [30] gives a systematic method to construct a dual problems
from an original minimization problem. The scheme highlights the two choices behind the
construction of a dual problem: the choice of a perturbation of the original minimization
problem and the choice of the coupling between the space of perturbation and a dual space.

Our contribution was to rewrite the results of Jeroslow using the perturbation-duality of
Rockafellar with the intent to see what the systematic point of of view of the perturbation-
duality scheme could bring to the understanding of the duality of a PILP. We realized
that the Jeroslow’s subadditive dual problem corresponds to the problem of finding a cS-
subdifferential F ∈ S of the value function GZ at the anchor b̄ ∈ Qm which coincides with
the value function GZ at the anchor b̄.

We sum up the strong duality results that we have rewritten in the perturbation duality
scheme in the following proposition and table.

Proposition 2.18. If the original PILP (2.1) is bounded from below (which is equivalent to
GZ(0) > −∞), then the biconjugates of the value function GZ for each scheme satisfy the
following equalities and inequalities

GR(b̄) = GZ
?R?R

′
(b̄) = GZ

?Q?Q
′
(b̄) ≤ GZ

cCcC
′
(b̄)︸ ︷︷ ︸

generally strict inequality

= GZ
cGcG

′
(b̄) = GZ

cScS
′
(b̄) = GZ(b̄) . (2.21)

Coupling Weak duality Strong duality Reference
Subadditive Yes Yes [19, Theorem 1]
Gomory Yes Yes [5, Theorem 5.2]
Chvátal Yes Yes [5, Proposition 2.18,Theorem 5.2]

Rational linear Yes No [19, Theorem 2]
Real linear Yes No [19, Theorem 2]

Table 2.6: PILP strong or weak duality for the five schemes

We complete the parallel between convex optimization and PILP that Blair and Jeroslow
made in [19].
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Convex optimization PILP
Polyhedral function Gomory function
Linear function Chvátal function
Convex cone Monoid [19]
Polyhedron Slice [19]

Table 2.7: Comparison between convex optimization and PILP

Perspective of new dual problems for PILP

Looking at the inequality in (2.21), we realize that the duality gap for PILP is between the
Fenchel biconjugate GZ?R?R

′
(which is equal to the continuous relaxation) and the Chvátal

biconjugate GZcCcC
′
(which is equal to the value of the PILP). In an ideal world, each time

we would want to solve a PILP, we would work on its Jeroslow dual problem (2.3a) with
Chvátal functions and obtain strong duality. Unfortunately, the Jeroslow dual problem with
Chvátal functions might not be easier to solve than the original PILP as it implies to find a
Chvátal function that achieves the strong duality and as a Chvátal function F ∈ Cm have no
restriction on the number time the ceiling function d·e is used in its expression (potentially
a exponential number of time in the number of constraints m).

However, if we renounce to strong duality, and only look for dual problems that achieves
weak duality with a tighter gap than the continuous relaxation, we could try to solve the
Jeroslow dual problem with Chvátal functions that have a fixed number of the ceiling function
in their expression. Going even further, by considering an even smaller set of Chvátal
functions, we would get the following dual problem.

Proposition 2.19. Let A ∈ Qm×n , k ∈ Qn , b̄ ∈ Qm define the usual PILP value function
GZ : Qm → R as in (2.1). Let α ∈ Q+ and . Then,

τ = supλ∈Qm
〈
λ, b̄

〉
+ α

⌈〈
λ, b̄

〉⌉
〈λ, Aj〉+ αd〈λ, Aj〉e ≤ kj ,

∀j ∈ {1, . . . , n}
(2.22)

is a quasi-affine program, meaning that the objective function is quasi-affine [24] and that
the constraints are quasi-affine and τ ≥ GR(b̄) if the affine program (2.22) is feasible.

In Proposition 2.19, for a fixed nonnegative rational α ∈ Q+, the considered Chvátal
functions F ∈ Cm belongs to the family {〈λ, ·〉+ αd〈λ, ·〉e}λ∈Qm whose function only has
one ceiling function in there expressions. It remains to be seen if tighter gaps are obtained
by such quasi-affine program is tighter than continuous relaxation and if the computing time
of quasi-affine programs is worth the gain in hypothetical gap tightness.
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Chapter 3

Partial perturbation-duality scheme for
PILP

In this chapter, we conclude the analogy between between the ‘Geoffrion Lagrangian relax-
ation’ method and the perturbation-duality scheme that we started in §1.2, by applying the
perturbation-duality scheme to PILP with a partial perturbation of the right-hand side of
the constraints. Especially, we apply the scheme to the knapsack problem.

In §3.1, we apply a real linear perturbation-duality scheme to 0-1 linear programs (par-
ticularly to the knapsack problem). In §3.2, we apply a Chvátal perturbation-duality scheme
to an ILP only partially perturbed.

3.1 Partial linear perturbation-duality scheme for 0-1 lin-
ear programming

In §3.1.1, we present the knapsack problem, its continuous relaxation and the already known
optimal solution of its continuous relaxation. In §3.1.2, we apply a real linear perturbation-
duality scheme to 0-1LP, in order to retrieve the already known optimal solution of its
continuous relaxation in §3.1.3 as a special case.

3.1.1 Knapsack problem continuous relaxation

We first write the knapsack problem in its minimization form. Then we present the well-
known solution of the continuous knapsack problem, obtained by sorting the items by effi-
ciency.

Knapsack problem in minimization form

The knapsack problem is a particular case of PILP. The problem is characterized by unsplit-
table n items indexed by j ∈ {1, . . . , n}, which all have a value kj ∈ Q+ \ {0} and a weight
Wj ∈ Q+ \ {0}, and by a capacity L ∈ Q+ such that
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L ∈ [ min
j∈{1,...,n}

Wj,

n∑
j=1

Wj] ∩Q+ . (3.1)

The goal is to put as much value in the knapsack as possible without exceeding the capacity
of the knapsack.

Usually, the knapsack problem is considered in its maximization form. To follow the
perturbation-duality scheme of Rockafellar [30], we consider the knapsack problem in its
minimization form.

∀l ∈ Q , GZ,K(l) = inf
x

〈−k, x〉
s.t. −Wx ≥ l

x ∈ {0, 1}n,
(3.2)

where W =
(
Wj

)
∈ Q1×n and k = (kj) ∈ Qn. As L is the capacity of the original knapsack,

we set the anchor to be l = −L ≤ 0. Each component xj of the optimization variable x
corresponds to the decision of taking or not the item j in the knapsack.

The function GZ,K : Q → R is the value function of the perturbed knapsack problem
where −l ∈ Q is the perturbed capacity of the knapsack. We immediately see that

GZ,K(l) = +∞ , ∀l > −min
j
Wj ,

GZ,K(l) =
n∑
j=1

kj , ∀l < −
n∑
j=1

Wj .

The knapsack problem and the algorithms for solving it have been thoroughly studied
in [23] and [20]. The value function obtained by perturbing the right-hand side has been
studied in [16].

Solution of continuously relaxed knapsack problem

As usual, the continuous relaxed value function GR,K : Qm → R is given by

∀l ∈ Q , GR,K(l) = inf
x

〈−k, x〉
s.t. −Wx ≥ l

x ∈ [0, 1]n.

(3.3)

We first need to define what means ‘items sorted by efficiency ’.

Definition 3.1. We say that the items of the knapsack problem (3.2), defined as couples of
value-weight (kj,Wj) ∈

(
Q \ {0}

)2
, ∀j ∈ {1, . . . , n}, are sorted by efficiency if

k1

W1

≥ k2

W2

≥ · · · ≥ kn
Wn

. (3.4)
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Theorem 3.2 ([23, Theorem 2.1]). Suppose that the items are sorted by efficiency as defined
in (3.4). Consider s = min

{
i ∈ {2, . . . , n}

∣∣∑i
j=1Wj > L

}
. Then, the vector x̂ ∈ [0, 1]n

given by

x̂j = 1 , ∀j = 1, . . . , s− 1 , (3.5a)
x̂j = 0 , ∀j = s+ 1, . . . , n , (3.5b)

x̂s =
L−

∑s−1
j=1 Wj

Ws

, (3.5c)

is an optimal solution of the continuously relaxed knapsack problem (3.3).

This result, which is proven in [23] by an ad hoc argument, is retrieved in §3.1.3 using a
linear perturbation-duality scheme.

3.1.2 Linear perturbation-duality scheme applied to general 0-1LP
case

To retrieve the result of Theorem 3.2, we look at the more general case of 0-1 linear pro-
gramming (where as usual the cost vector and the constraints are rational):

GZ(b) = inf
x

〈k, x〉 .
Ax = b

x ∈ {0, 1}n
(3.6)

As discussed in Proposition 1.6, applying linear perturbation-duality scheme will yield
the same result as applying the ‘Geoffrion Lagrangian relaxation’ method to all constraints
except the 0-1 constraints on x. Nonetheless, we pursue our objective to rewrite these known
results in the perturbation-duality scheme framework of Chapter 1.

Proposition 3.3. Let R : {0, 1}n ×Qm → R be the Rockafellian defined by

R(x, b) = 〈b, x〉+ δ{0}(b− Ax) , ∀x ∈ {0, 1}n , ∀b ∈ Qm , (3.7)

with an anchor b̄ ∈ Qm, and let ?R be the linear coupling defined in (2.10). We denote the
perturbation function (value function) GZ : Qm → R as in (2.1) and GR : Rm → R its
continuous relaxation as defined in (2.15). Then,

1. the dual function (see Table 1.1 ) Ψ : Rm → R satisfies

Ψ(p) = −
n∑
j=1

((
ATp

)
j
− kj

)
+
, ∀p ∈ Rm , (3.8a)

where (·)+ is the positive part;
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2. the dual objective function at the anchor (see Table 1.1 ) Φb̄ : Rm → R is concave and
satisfies

Φb̄(p) =
〈
b̄, p
〉
−

n∑
j=1

((
ATp

)
j
− kj

)
+
, ∀p ∈ Rm ; (3.8b)

3. the dual problem satisfies

sup
p∈Rm

{〈
b̄, p
〉
−

n∑
j=1

(
ATj p− kj

)
+

}
= GR(b̄) ; (3.8c)

4. the solutions p ∈ Rm of the dual problem satisfy

p ∈ arg max
p̃∈Rm

Φb̄(p̃) ⇐⇒ ∃µ ∈ [0, 1]n , b =
∑

j:ATj p>kj

Aj +
∑

j:ATj p=kj

µjAj , (3.8d)

where Aj are the columns of A.

Proof. We prove 4.
Φb̄ is a sum of polyhedral functions fj which have the same effective domain. So according

to [15] (Proposition 3.71) ∂Φb̄ =
∑

j ∂fj . With similar arguments and according to [15]
(Proposition 3.72) we can write ∂

(
ATj · −kj

)
+

(p) = Aj∂ (·)+ (ATj p− kj) . So

∂Φb̄(p) = {b̄} −
n∑
i=1

Aj∂ (·)+ (ATj p− kj) ,

= {b̄} −
∑

j:ATj p>kj

{Aj} −
∑

j:ATj p=kj

Aj[0, 1] . (as ∂ (·)+ (w) =


{0} if w < 0
{1} if w > 0
[0, 1] if w = 0

)

Moreover,
p ∈ arg max

p̃∈Rm
Φb̄(p̃) ⇐⇒ 0 ∈ ∂Φb̄(p) ,

which concludes the proof.

The positive part appearing in the results was already mentioned by Geoffrion in its first
example of application of ‘Lagrangian relaxation’ [14].

3.1.3 Partial linear perturbation-duality scheme applied to the knap-
sack problem

We now apply Proposition 3.3 to retrieve the same result as in Theorem 3.2.
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Corollary 3.4. Suppose that the items have been sorted by efficiency, meaning

k1

W1

≥ k2

W2

≥ · · · ≥ kn
Wn

.

Let s ∈ {2, . . . , n} be such that the capacity L ∈ Q+ of the knapsack satisfies

s−1∑
j=1

Wj ≤ L <

s∑
j=1

Wj .

Let us consider the dual objective function Φ−L obtained by perturbation-duality using the
knapsack value function GZ,K as the perturbation function, the coupling ?R, defined in (2.10),
and the anchor l = −L. Then, we have that

1. the dual problem, defined by Φ−L, satisfies

sup
p∈Rm

Φ−L(p) = −
( s−1∑
j=1

kj + ks
L−

∑s−1
j=1 Wj

Ws

)
= −

n∑
j=1

kjx̂j , (3.9a)

where the vector x̂ ∈ [0, 1] is defined as in Theorem 3.2;

2. the solutions of the dual problem arg maxp̃∈Rm Φ−L(p) are characterized by

p ∈ arg max
p̃∈Rm

Φ−L(p) ⇐⇒


p ∈ [ ks

Ws
, ks−1

Ws−1
] , if ks−1

Ws−1
6= ks

Ws
and L =

∑s−1
j=1 Wj ,

p = ks
Ws

, if ks−1

Ws−1
6= ks

Ws
and L 6=

∑s−1
j=1 Wj ,

p = ks
Ws

, if ks−1

Ws−1
= ks

Ws
;

(3.9b)

3. if L =
∑s−1

j=1 Wj, then GZ,K(l) = GR,K(l), which means that we have strong duality for
the partial linear perturbation-duality scheme.

3.2 Partial perturbation-duality scheme
In §1.2, we have drawn a parallel between the ‘Geoffrion Lagrangian relaxation’ method and
the perturbation-duality scheme. However, in Chapter 2 we have only considered perturba-
tions of every components bi of the right-hand side in PILP (2.1), while in the ‘Geoffrion La-
grangian relaxation’ method the constraints were split in two parts, and only the first part
was perturbed:

∀b ∈ Qm , GZ(b) = inf
x

〈k, x〉 ,
s.t. Ax = b

Ãx = b̃
x ∈ Zn+ ,

(3.10)
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where GZ : Qm → R , k ∈ Qn , A ∈ Qm×n , Ã ∈ Qm̃×n , b̃ ∈ Qm̃, and where we set an
anchor b̄ ∈ Qm.

Thus, to complete the analogy with the ‘Lagrangian relaxation’ method, we apply the
perturbation-duality scheme to the partially perturbed PILP (3.10) with affine Chvátal eval-
uation coupling, where affine Chvátal functions are defined as follows.

Definition 3.5. The affine Chvátal function space CAm is the intersection of all sets E ⊂
RQ

m

satisfying (2.5b), (2.5c), and(
u ∈ Qm 7→ 〈v, u〉+ β

)
∈ E , ∀v ∈ Qm , ∀β ∈ Q . (3.11)

The perturbation-duality scheme we use is given by the affine Chvátal evaluation cou-
pling cCA and the following Rockafellian R : {x̃ ∈ Zn+|Ãx̃ = b̃} ×Qm → R defined by:

R(x, b) = 〈k, x〉+ δ{0}(b− Ax) , ∀x ∈ {x̃ ∈ Zn+|Ãx̃ = b̃} , ∀b ∈ Qm . (3.12)

Proposition 3.6. The partially perturbed PILP (3.10) satisfies the following strong duality
property

GZ(b̄) = GZ
cCAcCA

′
(b̄) = sup

F∈CAm

{
F (b̄) ·+ inf

Ãx=b̃
x∈Zn+

{
〈k, x〉 − F (Ax)

}}
, (3.13a)

which also means that the value function GZ of the partially perturbed PILP (3.10) is cCA-
convex.

Furthermore, if GZ(b̄) ∈ R, there exists an affine Chvátal function F ∈ CAm, as in
Definition 3.5, satisfying

GZ(b̄) = F (b̄) , (3.13b)
inf
Ãx=b̃
x∈Zn+

{
〈k, x〉 − F (Ax)

}
= 0 . (3.13c)

More specifically, the function F is given by a Chvátal function H ∈ Cm+m̃ such that

H
(
b, b̃
)

= F (b) , ∀b ∈ Qm , (3.13d)

H
(
Aj, Ãj

)
≤ kj , (3.13e)

H
(
0, 0
)
≤ 0 , (3.13f)

(3.13g)

where Aj, Ãj are respectively the columns of A and Ã.

Proof. First, let us consider the perturbation-duality scheme of the problem (3.10) such that
all the right-hand side are perturbed by (b, b̃) ∈ Qm+m̃, and such that Qm+m̃ is coupled with
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the Chvátal space Cm+m̃. Then, according to [5, Proposition 2.18,Theorem 5.2], there is a
Chvátal function H ∈ Cm+m̃ that satisfies (3.13e), (3.13f) and

GZ(b̄) = H(b̄, b̃) .

Now, we prove that GZcCAcCA
′ ≥ GZ(b̄). We have that

GZ
cCAcCA

′
(b̄) = sup

F∈CAm

{
F (b̄) ·+ inf

Ãx=b̃
x∈Zn+

{
〈k, x〉 − F (Ax)

}}
,

≥H(b̄, b̃) ·+ inf
Ãx=b̃
x∈Zn+

{
〈k, x〉 −H(Ax, b̃)

}
, (as H(·, b̃) ∈ CA)

=H(b̄, b̃) ·+ inf
x∈Zn+

{
〈k, x〉 −H(Ax, Ãx)

}
,

= sup
G∈Cm+m̃

{
G(b̄, b̃) ·+ inf

x∈Zn+

{
〈k, x〉 −G(Ax, Ãx)

}}
,

=H(b̄, b̃) ,

=GZ(b̄) ,

which concludes the proof.
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Part II

Algorithms in abstract convexity
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Chapter 4

Global and proximal methods

The first things to come to mind when talking about first order optimization algorithms are
the subgradient descent methods for proper convex lower semi-continuous objective functions
or the gradient descent methods for differentiable objective functions, and their projected
counterparts. We refer the reader to [3] for a comprehensive study of first order methods.
When minimizing f : Rn → R, a proper convex lsc function, on C ⊂ Rn, a closed convex
set, a projected subgradient descent takes the form of a discrete trajectory {uk}k∈N ⊂ Rn
defined by

uk+1 = πC(uk − tkvk) , vk ∈ ∂f(uk) , ∀k ∈ N , u0 ∈ Rn , (4.1)

where πC is the projection over the closed convex set C and {tk}k∈N are the step sizes.
In the definition of the trajectory (4.1), we are able to write uk − tkvk because the

vectors uk and the subgradient vk live in the same vector space, Rn. However, in abstract
convexity, subgradients do not necessarily belong to a dual space V that can be identified to
is paired primal space U (as it is the case in Chapter 2 where a primal space Qm is paired
with the Chvátal functional space Cm for instance). Then, the trajectory equation (4.1) does
not make sense anymore. In order to define first-order optimization, other methods need to
be considered.

In §4.1, we present some global optimization in generalized convexity from [32]. In §4.2,
we present a definition of proximal methods for one sided linear convexity.

4.1 Global optimization methods
Rubinov presented several global optimization methods in [32] for generalized convexity that
remind methods in MILP and metaheuristics such as cutting methods, branch-and-bound
methods and tabu search. In §4.1.1, we provide background on generalized convexity and
generalized subgradients. In §4.1.2, we present the abstract cutting plane method, the abstract
branch-and-bound method and the abstract tabu search.
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4.1.1 Background on abstract convexity and generalized subgradi-
ents

First we provide a definition for abstract convexity, then we present generalized subgradients.

Abstract convexity

There exists many definitions of abstract convexity concerning sets and functions [34]. Here,
we are interested by a definition for abstract convex functions that stems from the follow-
ing characterization of usual proper convex lower semicontinuous functions: a function is
proper convex lsc if and only if it is the supremum of its affine minorants [2, Proposition
8.16,Corollary 13.42]

Definition 4.1 ([32, Definition 1.1]). Let W be a set. Let H ⊂ RW be a nonempty set
of functions, which we call set of elementary functions. A function f : W → R is called
abstract convex with respect to H (or H-convex) if there exists a set D ⊂ H such that f is
the upper envelope of the set D:

f(w) = sup{h(w)|h ∈ D} , ∀w ∈ W . (4.2)

For usual convexity, the set H is the set of affine functions.

Remark 4.2. Pallaschke and Rolewicz provided a result in [28, §1.2,Equation (1.1.7), The-
orem 1.2.6] which states that if the set H ⊂ RW is stable by the addition of constant, i.e.
H + k ⊂ H for all real number k ∈ R, then H-convexity is equivalent to c-convexity, with
respect to a coupling c.

Generalized subgradients

Suprisingly, Rubinov defined abstract supergradients in [32, Definition 1.7] but not abstract
subgradients. Here, we define abstract subgradients in a similar fashion.

Definition 4.3. Let W be a set. Let H ⊂ RW be a set of elementary functions. Let w ∈ W.
We call an elementary function h ∈ H abstract subgradient of the function f : W → R at
the point w, if the following inequality is satisfied:

f(w) ≤ h(w) ·+
[
−
(
h(w′) ·+

(
−f(w′)

))]
, ∀w′ ∈ W . (4.3)

We call the abstract subdifferential ∂Hf(w) ⊂ H of the function f at the point w the set
of all abstract subgradients of the function f at the point w.

Remark 4.4. When the set of elementary functions is defined with a coupling c : W × V
as c-affine functions, the Definition 4.3 of abstract subdifferential corresponds to the upper-
subdifferential defined in Appendix A.8.
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4.1.2 Abstract convex algorithms

We present now the abstract cutting plane method, abstract branch-and-bound method and
the abstract tabu search. We take their definition from Rubinov’s book [32].

Abstract cutting plane method

Definition 4.5 ([32, §9.2.3]). Let W be a set, H ⊂ RW be a set of elementary functions and
f :W → R be a H-convex function. Then, the following algorithm is called abstract cutting
plane method:

1. Set k := 0. Choose an arbitrary initial point w0 ∈ W.

2. Calculate an abstract subgradient hk ∈ ∂Hf(wk). Let

fk(w) = max
i=0,...,k

hi(w) , ∀w ∈ W .

3. Calculate an optimal solution ŵ ∈ minw∈W fk(w).

4. Set k := k + 1, wk = ŵ. Repeat from Step 2 until a stop condition is satisfied.

A proof of the convergence of the method with weak assumptions on the elementary
functions and the objective function is given in [28, Theorem 9.1.1].

Abstract branch-and-bound method

Definition 4.6 ([32, §9.2.4]). Let W be a set, H ⊂ RW be a set of elementary functions
and f : W → R be a H-convex function. Then, the following algorithm is called abstract
branch-and-bound method:

1. Take an initial partition P0 of the feasible set W. Set k := 0.

2. Let Pk = {Sk1 , . . . SkNk}, where ∪
Nk
i=1S

k
i ⊂ W.

For each i = 1 . . . , Nk, choose a finite set of points Wk
i ⊂ Ski .

3. For each i = 1, . . . , Nk, consider finite set Wk
i and compute the function hki given by a

finite maximum of subgradients:

hki = max
h∈∂Hf(Wk

i )
h .

4. For each i = 1 . . . , Nk, minimize each function hki over the set Ski . Let the lower bound
hki be defined by

hki = min
w∈Ski

hki (w) .
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5. Compute j = arg mini=1,...,Nk
hki .

6. Partition the set Skj such that
Skj = Ŝk ∪ S̃k .

7. Set a new partition of W by

Pk+1 := Pk \ {Skj } ∪ {Ŝk} ∪ {S̃k} .

8. Compute the upper bound f of the optimal value of f defined by

f = min
i=1,...,Nk

min
w∈Wk

i

f(w) .

9. Delete all sets Ski , for which hki ≥ f , from the partition Pk+1.

10. Set k := k + 1. Repeat from Step 2 until a stop condition is satisfied.

Abstract tabu search

Definition 4.7 ([32, §9.2.5]). Let W be a set, H ⊂ RW be a set of elementary functions
and f : W → R be a H-convex function. At step k, suppose we know an upper bound
f
k
of the function f and that the set W is partitioned into Pk = {Sk1 , . . . SkNk}. For each

i = 1, . . . , Nk, we consider a finite number of points
{
wkij
}
j
⊂ Ski and a finite number of

subgradients hkij ∈ ∂Hf(wkij).
We define the following quantities:

• the gap in Ski : Gk
i = f

k −minw∈Ski maxj h
k
ij(w);

• the precision of the approximation in Ski : Aki =
∑

w∈Wk
i
|f(wkij)− hkij(wkij)|;

• the volume V k
i of Ski ;

• the number Sk
i (in a certain sense) of stationary points in Ski ;

• an approximation of the minimum of the objective function f in Ski : Mk
i = minw∈Wk

i
f(w).

For given increasing functions Φ1,Φ2,Φ3,Φ4,Φ5 : R→ R, we define the quality

Qk
i = Φ1(Gk

i ) + Φ2(Aki ) + Φ3(Aki ) + Φ4(Sk
i )− Φ5(Mk

i ) (4.4)

Then, the following algorithm is called abstract tabu search:
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1. Take an initial partition P0 of the feasible set W. Set k := 0.

2. Let Pk = {Sk1 , . . . SkNk}, where ∪
Nk
i=1S

k
i ⊂ W. For each i = 1, . . . , Nk, choose a finite set

of points Wk
i ⊂ Ski .

3. For each i = 1, . . . , Nk, consider the finite set Wk
i =

{
wkij
}
j
and compute subgradi-

ents hkij ∈ ∂Hf(wkij).

4. Set a quality threshold Q
k. For each i = 1, . . . , Nk, compute the quality Qk

i of the
set Ski∗ .

5. Delete all Ski which cannot contain a global minimum of f .

6. Choose a set Ski∗ such that its quality Qk
i∗ is high enough: Qk

i∗ ≥ Q
k.

7. Partition the set Ski∗ into Ski∗ = Ŝ∪S̃. Set a new partition Pk+1 = Pk\{Qk
i∗}∪{Ŝ}∪{S̃}.

Repeat from Step 2 until a stop condition is satisfied.

4.2 Proximal methods with OSL coupling
Here, we will deal with a generalization of proximal method to the special case of One Sided
Linear (OSL) conjugacy. In §4.2.1, we systematically present OSL conjugacy. In §4.2.2, we
define the OSL proximal operator.

4.2.1 One sided linear (OSL) conjugacy

First, we provide basic definitions for OSL conjugacy. Then, we sum up OSL conjugacy
results in tables.

Basic definitions for OSL conjugacy

Definition 4.8 ([22, Definition 4.2.7]). Let W be a set and V be a vector space. We say
that a coupling c : W × V → R is one-sided linear (OSL) if, for all w ∈ W, the function
c(w, ·) : V → R is linear.

Remark 4.9. By the Definition 4.8 of OSL coupling, if c : W × V → R is OSL, then c is
finite valued.

Definition 4.10 ([7, Definition 2.3]). Let U and V be two vector spaces paired by a bilinear
form 〈, 〉 : U × V → R. Let W be a set and θ : W → U be a mapping. We define the
one-sided linear coupling ?θ (induced by the primal valued mapping θ between the set W and
the vector space V by

?θ(w, v) = 〈θ(w), v〉 , ∀(w, v) ∈ W × V . (4.5a)
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Similarly, we define the reverse OSL coupling ?θ ′ : V ×W by

?θ
′(v, w) = 〈θ(w), v〉 , ∀(w, v) ∈ W × V . (4.5b)

Definition 4.11 ([7, Definition 2.4]). Let W be a set and θ : W → U be a mapping. Let
h :W → R be a function. We define the conditional infimum (of the function h knowing the
mapping θ) as the function inf

[
h
∣∣ θ] : U → R given by

inf
[
h
∣∣ θ](u) = inf

{
h(w)

∣∣w ∈ W , θ(w) = u
}
, ∀u ∈ U . (4.6)

Systematic study of OSL coupling

Let W , U , V be three sets such that U and V are vector spaces paired by a scalar prod-
uct 〈·, ·〉. Let us consider θ : W → U a mapping, h : U → R a function to which we apply
?θ-conjugacy, g : V → R a function to which we apply ?′θ-conjugacy, the complement θ(W)c

of the set θ(W), a subset W ⊂ W , and a subset V ⊂ V .

conjugate h?θ =
(
inf
[
h | θ

])?
biconjugate h?θ?θ

′
=
(
h?θ
)?′ ◦ θ =

(
inf
[
h | θ

])??′ ◦ θ
Table 4.1: Summary of OSL conjugacy

h is such that... Subdifferentials
h :W → R ∂?θh ⊃ ∂

(
inf
[
h | θ

])
◦ θ

h = inf
[
h | θ

]
∂?θh = ∂

(
inf
[
h | θ

])
◦ θ

h is ?θ-convex ∂?θh = ∂
(
inf
[
h | θ

])??′ ◦ θ
h = f ◦ θ ∂?θh = ∂

(
f u δθ(W)

)
◦ θ ⊃ ∂f ◦ θ

Table 4.2: OSL-subdifferentials

indicator conjugate δ?θW = σθ(W )

indicator biconjugate δ?θ?θ
′

W = δco(θ(W )) ◦ θ

Table 4.3: Summary of OSL conjugacy applied to the Indicator function δW

Systematic study of reverse OSL coupling

We provide the same summary for the reverse OSL conjugacy.

conjugate g?θ
′
= g?

′ ◦ θ
biconjugate g?θ

′?θ =
(
g?
′
u δθ(W)

)?
Table 4.4: Summary of reverse OSL conjugacy
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g is such that ... Subdifferentials
g : V → R ∂?′θg = θ−1 ◦ ∂g

g is ?θ ′-convex ∂?′θg = θ−1 ◦
(
∂(g?

′
u δθ(W))

)−1

g =
(
ψ u δθ(W)

)?
∂?′θg = θ−1 ◦ ∂

(
ψ u δθ(W)

)?
Table 4.5: reverse OSL-subdifferentials

indicator conjugate δ?θ
′

V = σV ◦ θ
indicator biconjugate δ?θ

′?θ
V (·) = sup

u∈θ(W),v∈V
〈u, · − v〉

Table 4.6: Summary of reverse OSL conjugacy applied to the indicator function

4.2.2 OSL proximal operator

We remind that proximal points methods are iterative methods, where a proximal operator is
iteratively applied [3, Chapter 6]. Thus, we only define here a generalization of the proximal
operator to OSL coupling

To do so, let us first define the usual proximal operator, then let us define Bregman
distances, before defining the OSL proximal operator.

Usual proximal operator

Definition 4.12 ([26, Proposition 3a] [2, Definition 12.23]). Let f : Rn → R be a proper
convex lower semi-continuous function. Let ‖·‖2 be the usual euclidean norm on Rn. Then
for all u ∈ Rn,

inf
ũ∈Rn

{
f(ũ) +

1

2
‖ũ− u‖2

2

}
, (4.7)

is uniquely attained. We call Proxf : Rn → Rn the proximal operator of f and we define it
by

Proxf (u) = arg min
ũ∈Rn

{
f(ũ) +

1

2
‖ũ− u‖2

2

}
, ∀u ∈ Rn . (4.8)

We refer the reader to [29, §3] for several interpretations of the proximal operator such
as the Moreau-Yosida regularization, the resolvent of subdifferential operator, the modified
gradient step.

Generalization of proximal operator with Bregman distances

Similarly to how the mirror descent method is designed [4], it is possible to generalize the
proximal operator by replacing the function 1

2
‖·‖2 by a Bregman distance.
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Definition 4.13 ([22, Definition 4.3.1]). Let W and V be two sets, and let c : W × V be
a coupling. Let h : W →] −∞,+∞] be a Bregman function such that, for all w ∈ W, the
subdifferential ∂ch(w) :W ⇒ V is single valued, meaning ∂ch(w) = {∇h(w)}; and such that
∇h :W → V is injective.

We define the c-Bregman distance associated with h as the function

Dc,h :W ×W → R , (4.9)

given by
Dc,h(w,w′, v′) = h(w)u hc(∇ch(w′))u

(
−c(w′,∇ch(w′))

)
. (4.10)

Thus, for a given Bregman function h :W →]−∞,+∞] as in Definition 4.13, the OSL
proximal operator of a function f :W → R, could be informally defined as

Prox?θ,hf (w′) = arg min
w∈W

{
f(w)uD?θ,h(w,w′)

}
,

if we suppose that the arg min exists. Furthermore, informally,

Prox?θ,hf (w′) = arg min
w∈W

{
f(w)uD?θ,h(w,w′)

}
,

= arg min
w∈W

{
f(w)u h(w)u h?θ

(
∇?θh(w′)

)
u
(
−?θ(w, ∂?h(w′))

)}
,

= arg min
w∈W

{
f(w)u h(w)u

(
−?θ(w,∇?θh(w′))

)}
,

= arg max
w∈W

{
?θ(w,∇?θh(w′) ·+

(
−f(w)u h(w)

)
)
}
,

which is equivalent to

∂?θ
(
f u h

)(
Prox?θ,hf (w′)

)
3 ∇?θh(w′) ,

leading to the formal definition of OSL proximal operator.

Definition 4.14. Let f : W → R be a function. Let θ : W → U be a mapping. Let
?θ : W × V → R be a OSL coupling. Let h : W →]−∞,+∞] be a Bregman function as in
Definition 4.13.

Then, we call the OSL proximal operator Prox?θ,hf :W ⇒W of the function f associated
with h the function defined by

Prox?θ,hf =
(
∂?θ
(
f u h

))−1 ◦ ∇?θh . (4.11)

Proposition 4.15. Let us assume that the Bregman function h : W →] −∞,+∞] can be
decomposed as follows: h = q ◦ θ, where q : U →]−∞,+∞]. Then, we have that

Prox?θ,hf (w) = θ−1 ◦
(
∂
(
f u q u δθ(W)

))−1

◦ ∇
(
q u δθ(W)

)
◦ θ(w) , ∀w ∈ W (4.12)
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Chapter 5

Numerical results for E-Capra convex
problems

In this chapter, we apply the abstract cutting plane algorithm from [32, §9.2.30] to E-
Capra convex problems that we present in §5.1. In §5.2, we provide a formulation of the
abstract cutting plane algorithm adapted to E-Capra convex problems. Finally, in §5.3, we
present the instances of the different problems and the numerical results of abstract cutting
plane methods.

5.1 E-Capra convex optimization problems
First, we provide background on Capra conjugacy in §5.1.1. Then, we consider two E-
Capra convex problems, the minimization of the ratio of the `1 norm over `2 norm on a
blunt1 closed convex cone, in §5.1.2; the minimization of the `0 pseudonorm on a blunt closed
convex cone, in §5.1.3; and the spark of a matrix, in §5.1.4, which has a E-Capra convex
objective function but not a E-Capra convex feasible set.

5.1.1 Capra convexity

First we define Capra conjugacy. Then, we provide characterization of Capra convex
functions and Capra convex sets.

Capra conjugacy

Definition 5.1 (Mostly from [13, Definition 2.1]). Let ‖·‖ be a norm on Rm. We define the
coupling ¢ : Rm × Rm → R between Rm and Rm, that we call the Capra coupling, by

∀y ∈ Rm , ¢(x, y) =

{
〈x, y〉
‖x‖ , if x 6= 0 ,

0 , if x = 0 .
(5.1a)

1meaning without the origin 0 ∈ Rn.
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Similarly, we define the reverse coupling ¢′ : Rm × Rm → R between Rm and Rm, that
we call the Capra reverse coupling, by

¢′(y, x) = ¢(x, y) , ∀x, y ∈ Rm . (5.1b)

When the norm ‖·‖ is the Euclidean norm on Rn, we call that the coupling ¢ the eu-
clidean Capra (E-Capra) coupling.

Remark 5.2. ¢ is a one-sided linear coupling for θ = n, where n : Rm → Rm is defined by

n(x) =

{ x
‖x‖ , if x 6= 0 ,

0 , if x = 0 ,
∀x ∈ Rm . (5.2)

Capra convex functions and sets

Here, we present a characterization of Capra convex functions in the sense of the Defini-
tion A.6 of c-convexity. Then the definition and a characterization (in the case of a `p source
norm) of Capra convex sets, in order to define Capra convex problems, which are defined
as an optimization program where the objective function and the feasible set are Capra
convex.

Proposition 5.3 ([7, Proposition 3.3]). A function on Rd is ¢-convex if and only if it is the
composition of a closed convex function on Rd with the normalization mapping (5.2). More
precisely, for any function h : Rd → R, we have the equivalences

h is ¢-convex ,

⇐⇒ h = h¢¢
′

,

⇐⇒ h = (h¢)?
′ ◦ n , (where (h¢)?

′
: Rd → R is a closed convex function)

⇐⇒ there exists a closed convex function f : Rd → R such that h = f ◦ n .

Now, we present the definition and a characterization of Capra convex sets.

Definition 5.4 ([22, Definition 6.2.1]). Let ‖·‖ be a source norm. Let ¢ be the corresponding
Capra coupling, as in Definition 5.1. We say that the set D ⊂ Rd is Capra convex if the

indicator function δD is a Capra convex function, meaning δD = δ
¢¢′
D .

Proposition 5.5 ([22, Proposition 6.2.6]). Let the source norm be the `p norm defined
by `p(x) =

(∑n
i=1|xi|p

) 1
p ,∀x ∈ Rn, where p ∈]1,+∞,[. Let ¢ be the corresponding Capra

coupling, as in Definition 5.1, and let n : Rd → Rd be the corresponding normalization
mapping. Let D ⊆ Rd be a nonempty set. Then, we have the equivalence

D is Capra convex ⇐⇒


D is a cone,
D ∪ {0} is closed,
D ∩ {0} = co

(
n(D)

)
∩ {0}

. (5.3)
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5.1.2 Ratio of two norms

Here, we define the E-Capra convex problem of minimizing of the ratio of the `1 norm
over `2 norm on a blunt closed convex cone. We remind that the norms `1 : Rn → R+ and
`2 : Rn → R+ are defined by

`1(x) =
n∑
i=1

|xi| , ∀x ∈ Rn , (5.4a)

`2(x) =

√√√√ n∑
i=1

x2
i , ∀x ∈ Rn . (5.4b)

Proposition 5.6. Let {u1, . . . , ur} ⊂ Rn be a set of real vectors. Consider C ⊂ Rn the
closed convex cone defined by

C = cone(u1, . . . , ur) , (5.5)

where cone(u1, . . . , ur) are all the nonnegative combinations of the set {u1, . . . , ur}.
Then, the minimization problem defined by

inf
x∈C\{0}

`1(x)

`2(x)
(5.6)

is E-Capra convex.

Proof.

• The objective function f : Rn \ {0} → R+ of the problem (5.6) is defined by

f(x) =
`1(x)

`2(x)
, ∀x ∈ Rn ,

is E-Capra convex according to Proposition 5.3, as the function f satisfies f = `1◦ ·
`2(·)

and the `1 norm is a proper convex lsc function.

• The closed convex cone C in (5.5) satisfies{
C ∪ {0} is closed,
C ∩ {0} = co

(
n(C)

)
∩ {0} .

Thus, we can apply Proposition 5.5 which yields the E-Capra convexity of C using
Proposition 5.3, as C is a closed convex set.

Thus, the ‘ratio of two norms over a blunt cone’ problem (5.6) is an E-Capra convex
problem.
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5.1.3 Counting pseudonorm `0

Here, we define the E-Capra convex problem of minimizing the `0 pseudonorm on a blunt
closed convex cone. We remind that the pseudonorm `0 : Rn → {0, . . . , n} is defined by

`0(x) = |{i : xi 6= 0}| , ∀x ∈ Rn , (5.7)

where |·| is the cardinality function.

Proposition 5.7. Let C ⊂ Rn be the closed convex cone defined in (5.5). Then, the mini-
mization problem

inf
x∈C\{0}

`0(x) , (5.8)

is E-Capra convex.

Proof. The Capra convexity of `0 has been proven in [7]. We have proven that C is a
E-Capra convex set in the proof of Proposition 5.6.

5.1.4 Spark of a matrix

Here, we define the E-Capra convex problem of computing the spark of a matrix.

Definition 5.8. Let A ∈ Rm×n be a real matrix. We define the spark of the matrix A by

spark(A) = min
Ax=0

x∈Rn\{0}

`0(x) . (5.9)

The complexity of the computation of the spark for a given matrix have been studied in
[36, §II]; the problem is actually NP-hard [36, Corollary 1].

Remark 5.9. We can interpret the spark of a matrix A as the smallest number of linearly
dependent columns of A. If we consider the matrix A as matroid, the spark is also the size
of the smallest circuit on A [36, §II].

Problems Min of the ratio of Min of `0 Spark of a matrix
two norms in a blunt cone in a blunt cone

Objective function `1/`2 `0 `0

Feasible set cone(u1, . . . ur) \ {0} cone(u1, . . . ur) \ {0}
{
x ∈ Rn \ {0} : Ax = 0

}
Objective E-Capra convex X X X
Feasible set E-Capra convex X X

Table 5.1: Summary of three minimization problems with E-Capra objective function
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5.2 Implementation
In §5.2.1, we present the E-Capra cutting plane method. In §5.2.2, we present the modified
E-Capra cutting plane method for `0 that we will use for numerical tests in §5.3.

5.2.1 E-Capra cutting plane: linear program over the Euclidean
sphere

First, we present a reformulation for E-Capra programs. Then, we present the E-Capra
cutting plane algorithm, and finally formulas of E-Capra subgradients for particular cases.

Reformulation of the E-Capra problems with the E-Capra cutting plane method

To apply a cutting plane method to the three E-Capra minimization problems from Table
5.1.4, we need to rewrite them in a such a way that makes the E-Capra cutting planes
apparent. We treat the three E-Capra convex problems at the same time here. So let us
consider a general E-Capra minimization on a blunt closed convex cone.

Proposition 5.10. Consider a E-Capra convex function f : Rn → R, a closed convex cone
C ⊂ Rn that satisfies the conditions in (5.3), and the E-Capra minimization problem they
define:

inf
x∈C\{0}

f(x) . (5.10)

Then, the problem (5.10) is equivalent to

inf
x∈C

supy∈Rn
{
〈x, y〉 − f¢(y)

}
.

`2(x) = 1
(5.11)
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Proof.

inf
x∈C\{0}

f(x) ,

⇐⇒ inf
x∈C\{0}

f¢¢
′

(x) , (as f = f¢¢
′
by E-Capra convexity of f)

⇐⇒ inf
x∈C\{0}

sup
y∈Rn

{〈 x

`2(x)
, y

〉
− f¢(y)

}
, (by definition of ¢′-conjugacy)

⇐⇒ inf
x/`2(x)∈C
x∈Rn\{0}

sup
y∈Rn

{〈 x

`2(x)
, y

〉
− f¢(y)

}
, (as C is a cone)

⇐⇒ inf
x∈C

`2(x)=1
x∈Rn\{0}

sup
y∈Rn

{
〈x, y〉 − f¢(y)

}
, (by change of variable)

⇐⇒ inf
x∈C

`2(x)=1

sup
y∈Rn

{
〈x, y〉 − f¢(y)

}
, (as `2(x) = 1 =⇒ x 6= 0)

E-Capra cutting plane algorithm

The E-Capra cutting plane method consists of successive approximations of an E-Capra
convex problem formulated as in (5.11). Basically, in the formulation (5.11), we replace
supy∈Rn by maxy∈Cutsk at the iteration k, where Cutsk ⊂ ∂¢f is a set of subgradients of the
E-Capra convex objective function f .

Definition 5.11. We call the following algorithm the E-Capra cutting plane method.

1. Set k := 0. Find x0 ∈ C such that `2(x0) = 1.

2. Find yk ∈ ∂¢f(xk).

3. Find an optimal solution xk+1 of the subproblem
inf
x∈C

maxk−1
h=0

{
〈x, yh〉 − f¢(yh)

}
`2(x) = 1

.

4. Set k := k + 1. Repeat from Step 2 until a stop condition is satisfied.

E-Capra subgradients of the objective functions

Here, we gather the formulas for the E-Capra subdifferential of `0 and `1/`2 that are used
in the algorithm described in §5.2.1. First, we remind the definition of top-k norm.
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Definition 5.12 (from [9, Definition 9]). For all subset of indices K ⊂ {1, . . . , n} and all
real vector x ∈ Rn, the real vector xK ∈ Rn is defined by

xK,i = xi , ∀i ∈ K , (5.12a)
xK,i = 0 , ∀i ∈ {1, . . . , n} \K . (5.12b)

For k ∈ {1, . . . , n}, we call top-k norm associated with the source norm `2 (5.4b) the norm
defined by

‖x‖tn
k,2 = sup

K⊂{1,...,n},|K|≤k
`2(xK) (5.12c)

Proposition 5.13. Let ¢ : Rn × Rn → R be the E-Capra coupling defined by the source
norm `2 and x ∈ Rn \ {0} be a real vector different from 0.

• Considering the permutation ν : {1, . . . , n} → {1, . . . , n} such that |xν(1)| ≥ · · · ≥
|xν(n)| and considering the set supp(x) =

{
i ∈ {1, . . . , n}

∣∣xi 6= 0
}
, we have that [22,

Proposition 5.4.7, §5.5.1]

y ∈ ∂¢`0(x) ⇐⇒



∃λ ∈ R+ , yi = λxi , ∀i ∈ supp(x) ,
|yj| ≤ mini∈supp(x)|yi| , ∀j /∈ supp(x) ,

|ysupp(k+1)| ≥ (‖y‖tn
k,2 + 1)2 − (‖y‖tn

k,2)2 ,

∀k ∈ {0, . . . , `0(x)− 1} ,
|ysupp(`0(x)+1)| ≤ (‖y‖tn

`0(x),2 + 1)2 − (‖y‖tn
`0(x),2)2 ,

∀k ∈ {0, . . . , `0(x)− 1} .

(5.13a)

• Considering the component wise sign function sign : Rn → {−1, 0, 1}n, we also have
that

y ∈ ∂¢(`1/`2)(x) ⇐⇒ y = sign(x) . (5.13b)

Proof. The proof of (5.13b) is left as an exercise for the reader.

5.2.2 Modified E-Capra cutting plane for the pseudonorm `0

Applying the E-Capra cutting plane presented in Definition 5.11 without any changes when
the objective function is the pseudonorm `0 leads to two major weaknesses that we present
here, before proposing solutions. Then, we present a modified E-Capra cutting plane for
the pseudonorm `0.

Problems with the E-Capra cutting plane method

1. At Step 2 in Definition 5.11, during the computation of a E-Capra uppersubgradi-
ent yk ∈ ∂¢f(xk), the norm

∥∥yk∥∥
2
of subgradients tends to infinity when there are

indices ik such that xkik 6= 0 and xkik −−−→k→∞
0 .

52



2. The sphere constraint `2(x) = 1 in the problem reformulation (5.11) is not a convex
constraint, even if it is differentiable. Thus, when solving the subproblem at Step 3 in
Definition 5.11 with a usual projected gradient descent, we are not guaranteed to find
a minimizer, but only a local minimizer of the subproblem.

Proposed solutions

1. If 0 6= |xkik | < ε, where ε > 0 is a fixed threshold, we project xk on the ik-th axis before
computing a E-Capra subgradient yk ∈ ∂¢f(xk) at Step 2 in Definition 5.11.

2. To compensate for the nonoptimal resolution of the nonconvex subproblem at Step 3
in Definition 5.11, we use local search: we keep track of the minimal known value `k0
at iteration k and we set the 1 + `

k

0 smallest components of the current solution xk to
0 and check if the resulting vector belongs to the E-Capra convex set. If it does, we
set `k+1

0 := `
k

0 − 1, otherwise we set `k+1

0 := `
k

0 − 1.

Furthermore, as we have the implication `0(x) ≤ k =⇒ `1(x) ≤ k, we add the
following admissible constraint

`1(x) ≤ `
k

0︸︷︷︸
minimal known value of `0 at step k

,

to the nonconvex subproblem at Step 3, each time we improve the best known value `k0.
Doing so restrict the feasible space of the nonconvex subproblem in the hope of remov-
ing local minima of the subproblem, increasing the probability of finding the global
minimum of the subproblem.

We present now the modified E-Capra cutting plane for the pseudonorm `0, that we
will use for the numerical tests in §5.3.

Definition 5.14. We call the following algorithm the modified E-Capra cutting plane
method for the pseudonorm `0.

1. Set a threshold ε > 0. Set k := 0. Set the upper bound `
k

0 = n. Find x0 ∈ C such that
`2(x0) = 1.

2. For each i ∈ {1, . . . , n}, if |xki | < ε, set xki := 0.

3. Find yk+1 ∈ ∂¢`0(xk).

4. Find an optimal solution xk of the subproblem
inf
x∈C

maxk−1
h=0

{
〈x, yh〉 − `

¢
0 (yh)

}
`2(x) = 1

`1(x) ≤ `
k

0

.
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5. Set x̂ := xk+1. Set the 1 + `
k

0 smallest components of x̂ to 0. If x̂ ∈ C \ {0}, set
`
k+1

0 := `
k

0 − 1. Otherwise, set `
k+1

0 := `
k

0.

6. Set k := k + 1. Repeat from Step 2 until a stop condition is satisfied.

5.3 Numerical results
We aim to test the E-Capra cutting plane method, presented in Definition 5.11, with the
following numerical tests on the three ‘E-Capra convex’ problems from Table 5.1.4. To our
knowledge, no numerical tests of the abstract cutting plane method have been done so far.

In §5.3.1, we present the instances on which we apply the E-Capra cutting plane method.
In §5.3.2, in §5.3.3 and in §5.3.4, we respectively present the numerical results of the tests
for the minimization of the ratio of two norms, the minimization of the pseudonorm `0 and
the spark of matrix. We discuss the results in §5.3.5.

5.3.1 Generated instances

The first goal of this numerical tests is to check if the E-Capra cutting plane method
converges on simple instances. The second goal is estimate the influence of the dimension
on the time of convergence. To do so, we have generated cones that contains a known
optimal solution for the minimization of the ratio of two norms and the minimization of the
pseudonorm `0. For the spark of a matrix, we have generated square matrices A ∈ Rn×2,
where n ∈ 2N is an even number, such that their spark equals n/2.

Instances for the ratio of two norms and for the pseudonorm `0

For each dimension n ∈ {3, . . . , 10, 20, . . . , 90, 100} and each angle θ ∈ π
2
{ 1

10
, . . . , 5

10
}, we

have generated cones

Kn,θ = cone{u1, . . . , u2dn/2e} , (5.14)

with an even number of generator ui ∈ Rn, where

∀k ∈ {1, . . . , n} , uk1 = cos(θ) ,

∀j ∈ {1, . . . , dn/2e},∀i ∈ {2, . . . , n} ,

{
u2j−1
i = εji

1√
n−1

sin(θ) ,

u2j
i = −εji 1√

n−1
sin(θ) .

such that the vectors εj ∈ {−1, 1}n−1 are dn/2e distinct vectors.
It is easy to check that, for all dimension n ∈ N and all angles θ ∈]0, π/2[, the vec-

tor (1, 0, . . . , 0)T ∈ Rn is included in Kn,θ. Thus, we have generated cones centered on the
first axis of Rn and we control their ‘tightness’ to the first axis thanks to the angle θ.
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Instances for spark of a matrix

For each dimension n ∈ {6, 12, 14, . . . , 30, 50, 80, 100, 130, 150, 180, 200}, we have generated
square matrices A ∈ Rn×n such that their spark is equal to s := n/2. To do so, we used the
following algorithm.

1. Randomly choose s− 1 vectors Ai ∈ Rn.

2. Randomly choose s− 1 real numbers µi ∈ R.

3. Compute the vector As =
∑s−1

i=1 µiAi.

4. Randomly choose n− s vectors Ah ∈ Rn.

5. Set the matrix A =
(
A1, . . . , An

)
.

6. Shuffle the columns of the matrix A.

5.3.2 Ratio of `1 over `2
Here, we measure the time and the number of iterations needed to attain the optimal solution
for different dimensions and angle θ of the feasible cone defined in §5.3.1. We have run the
E-Capra cutting plane method from Definition 5.11 using the nonlinear optimization solver
Ipopt for the nonconvex subproblem of Step 3 with the following parameters: tol = 1E-8,
max_iter = 3000. It is worth noticing that the results display a part of randomness as the
subproblem Step 3 is nonconvex and we use a random starting point to solve it.

Figure 5.1: Solving time for the minimization of the ratio of two norms
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Figure 5.2: Solving time for the minimization of the ratio of two norms in low dimension

Figure 5.3: Number of iterations for the minimization of the ratio of two norms
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Figure 5.4: Number of iterations for the minimization of the ratio of two norms in low
dimension

We see in Figure 5.3.2 that the number of iterations to solve the instances in low dimension
does not depend on the angle nor on the dimension. Beyond the dimension 10 in Figure 5.3.2,
the number of iterations seems to grow linearly with the dimension and not to depend on
the angle θ.

We see in Figure 5.3.2 and Figure 5.3.2 that the time for solving the instances grows
exponentially with the dimension and increases faster for greater angle θ.

5.3.3 Counting pseudonorm `0

Here, for a given time budget of 200 seconds, we measure the relative gap best found value−1
dim

between the best value found by the modified E-Capra cutting plane method from Defi-
nition 5.14 and the optimal value of instances. We use the nonlinear optimization solver
Ipopt for the nonconvex subproblem of Step 4 with the following parameters: tol = 1E-8,
max_iter = 3000.
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Figure 5.5: Relative gap for the minimization of `0 with a time budget = 200s

We see in Figure 5.3.3 that from dimension 3 to 5 the modified E-Capra cutting plane
method generally attains optimality, from dimension 6 to 8 attains a relative gap smaller
than 40%, and for dimension 9 and 10 a relative gap greater than 40%.

5.3.4 Spark of a matrix

Here, we test modified E-Capra cutting plane method from Definition 5.14 to compute the
spark of the matrices described in §5.3.1. We compare the time needed, on the one hand, to
compute the spark of the instances by the modified E-Capra cutting plane method to on
the time needed by a ‘bruteforce’ method — where we select all n choose k columns of the
matrix for k = 1, . . . , n and stopping at the first k such that we find k linearly dependent
columns. We also look at the time needed to compute the spark for a matrix by the modified
E-Capra cutting plane method in higher dimension.

We use the nonlinear optimization solver Ipopt for the nonconvex subproblem of Step 4
of the modified E-Capra cutting plane method with the following parameters: tol = 1E-8,
max_iter = 3000.

Dim. 6 12 14 16 18 20 22
BF time (s) 2.93E-4 2.20E-2 6.80E-2 2.79E-1 1.60E0 8.10E0 3.84E1
CP time (s) 8.40E-2 1.59E-1 1.83E-1 3.06E-1 2.59E-1 3.66E-1 3.89E-1

Table 5.2: Solving time comparison the between brute force (BF) and the cutting plane (CP)
methods for spark
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Figure 5.6: Solving time for spark comparison bewteen brute force and E-Capra cutting
plane method

Figure 5.7: Solving time for spark

In Table 5.3.4 and in Figure 5.3.4, we see that the modified E-Capra cutting plane
if 100 times slower than the bruteforce method at dimension 6 and 100 times faster than
bruteforce method at dimension 22. The tipping point where the modified E-Capra cutting
plane becomes better is at dimension 16.

In Figure 5.3.4, we see that the time needed to compute the spark seems to grow expo-
nentially with dimension.
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5.3.5 Discussion

We first compare the numerical results for the three problems, then, we provide perspective
for further numerical tests.

Comparison of the results for the three problems

If we were to rank the three considered problems by order of difficulty, we would come up
with this ranking according to the numerical results from § 5.3.2, § 5.3.3 and § 5.3.4 :

1. the minimization of the ratio of the `1 norm over the `2 norm;

2. the computation of the spark of a square matrix;

3. the minimization of the `0 pseudonorm in a blunt convex cone.

The fact that the minimization of the ratio of the `1 norm over the `2 norm is the easiest
problem of the three comes as no surprise, as it satisfies the assumptions of the convergence
theorem of the cutting plane method [28, Theorem 9.1.1], while the two other problems do
not (as the pseudonorm `0 is not continuous). However, it is more surprising to see that the
minimization of the `0 pseudonorm in a blunt convex cone is harder than the computation
of the spark of a square matrix. Indeed, the computation of the spark of a matrix is not a E-
Capra convex problem, as we can see in Table 5.1.4. Maybe this observation has a link with
the fact that the constraints of minimization problem for the computation of the spark is
given by an equation Ax = 0, while the constraints of the minimization of the `0 pseudonorm
in a blunt convex cone is given by a convex combination x =

∑r
i=1 λiui ,

∑r
i=1 λi = 1 , λi ≥

0, of the generators u1, . . . ur of the cone.
It is worth noting that using the modified E-Capra cutting plane method from Defini-

tion 4 has been decisive for the convergence of the tests in the case of the minimization
of `0 and for the computation of sparks. With the E-Capra cutting plane method from
Definition 5.11, Ipopt was unable to find any feasible point of the nonconvex subproblem at
Step 3.

Perspective for future numerical tests

• Points of a polyhedral cone K can be expressed, in a primal form, as a convex com-
bination of generators of the cone K and, in a dual form, as an intersection of hy-
perplanes Ax ≤ 0 according to Minkowski–Wey’s theorem [10, Theorem 3.11]. As a
consequence, the minimization of the `0 pseudonorm in a blunt convex cone should
be tested with the cone constraints expressed as an intersection of hyperplanes of the
form Ax ≤ 0.

• For the minimization of the ratio of two norms, the minimization problem infx 6=0 `1(x)/`2(x)
was a toy example. Tests should be conducted with ratio of more relevant norms such
that the minimization problem infx 6=0 ‖Ax‖ / ‖x‖, which is used to compute the singular
values of a the matrix A.
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• A branch-and-cut method with E-Capra cuts for the minimization of the `0 pseudonorm
in a blunt convex cone and for the computation of the spark of a matrix should be
tested and compared to the cutting plane method.
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Conclusion

In this report, we have explored what insights the perturbation duality scheme has to offer
on PILP, in the first part, and we have tested the efficiency of a cutting plane method
for E-Capra convex problems (while highlighting other global optimization methods and a
possible definition of proximal operator for OSL conjugacy), in the second part.

In Chapter 2, we have understood that Jeroslow’s subadditive dual problem for a PILP
corresponds to the dual problem we obtained by perturbation-duality with the subaddi-
tive coupling cS , but by restricting the dual space of subadditive functions to subaddi-
tive functions which coincides with the value function at the anchor and that are cS-
uppersubgradients. Perspectives of new dual problems for PILP involving subsets of the
Chvátal functions have been given in §2.4 and in Chapter 3. In particular, we obtain a
strong duality result between PILP and the dual problems by perturbing only a part of
the right-hand side of the constraints and by coupling the perturbation with affine Chvátal
functions as in Definition 3.5.

In Chapter 5, we have observed promising results for the abstract cutting plane applied
to E-Capra convex problems, especially for the ratio of the norm `1over the norm `2 and the
computation of the spark of square matrix. The first results suggest that global optimization
methods could be efficient for solving E-Capra convex problems. For the ratio of two
norms, other ratio should be tested, such as ‖A·‖ / ‖·‖, whose minimization is useful to find
the singular values of the matrix A. For E-Capra convex problems with the pseudonorm
`0, which has a natural combinatorial structure, branch-and-bound and branch-and-cuts
methods could be tested.
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Part III

Appendix
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Appendix A

Generalities

A.1 Convex analysis conventions and definitions
We remind several conventions and definitions of convex analysis that are used throughout
this report.

A.1.1 inf∅, sup∅ conventions

We use the following convention:

inf
∅
· = +∞ , (A.1a)

sup
∅
· = −∞ . (A.1b)

A.1.2 Moreau additions

The Moreau additions extend the usual addition to R× R.

Definition A.1. We call lower addition the operator which extends the usual addition by

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ . (A.2a)

We call upper addition the operator which extends the usual addition by

(+∞)u (−∞) = (−∞)u (+∞) = +∞ . (A.2b)

A.1.3 Properness of functions

Definition A.2. Let f :W → R. Then

domf =
{
w ∈ W | f(w) < +∞

}
, (A.3)

is called its effective domain.

Remark A.3. Let f :W → R. If f |domf = −∞ we say f is a valley function.
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A.2 Background on J. J. Moreau lower and upper addi-
tions

When we manipulate functions with values in R = [−∞,+∞], we adopt the following Moreau
lower addition or upper addition, depending on whether we deal with sup or inf operations.
We follow [27]. In the sequel, u, v and w are any elements of R.

Moreau lower addition

The Moreau lower addition extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ . (A.4a)

With the lower addition, (R, ·+) is a convex cone, with ·+ commutative and associative. The
lower addition displays the following properties:

u ≤ u′ , v ≤ v′ ⇒ u ·+ v ≤ u′ ·+ v′ , (A.4b)
(−u) ·+ (−v) ≤ −(u ·+ v) , (A.4c)

(−u) ·+ u ≤ 0 , (A.4d)
sup
a∈A

f(a) ·+ sup
b∈B

g(b) = sup
a∈A,b∈B

(
f(a) ·+ g(b)

)
, (A.4e)

inf
a∈A

f(a) ·+ inf
b∈B

g(b) ≤ inf
a∈A,b∈B

(
f(a) ·+ g(b)

)
, (A.4f)

t < +∞⇒ inf
a∈A

f(a) ·+ t = inf
a∈A

(
f(a) ·+ t

)
. (A.4g)

Moreau upper addition

The Moreau upper addition extends the usual addition with

(+∞)u (−∞) = (−∞)u (+∞) = +∞ . (A.5a)

With the upper addition, (R,u) is a convex cone, with u commutative and associative. The
upper addition displays the following properties:

u ≤ u′ , v ≤ v′ ⇒ uu v ≤ u′ u v′ , (A.5b)
(−u)u (−v) ≥ −(uu v) , (A.5c)

(−u)u u ≥ 0 , (A.5d)
inf
a∈A

f(a)u inf
b∈B

g(b) = inf
a∈A,b∈B

(
f(a)u g(b)

)
, (A.5e)

sup
a∈A

f(a)u sup
b∈B

g(b) ≥ sup
a∈A,b∈B

(
f(a)u g(b)

)
, (A.5f)

−∞ < t⇒ sup
a∈A

f(a)u t = sup
a∈A

(
f(a)u t

)
. (A.5g)
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Joint properties of the Moreau lower and upper addition

We obviously have that
u ·+ v ≤ uu v . (A.6a)

The Moreau lower and upper additions are related by

− (uu v) = (−u) ·+ (−v) , −(u ·+ v) = (−u)u (−v) . (A.6b)

They satisfy the inequality
(uu v) ·+ w ≤ uu (v ·+ w) . (A.6c)

with

(uu v) ·+ w < uu (v ·+ w) ⇐⇒


u = +∞ and w = −∞ ,

or
u = −∞ and w = +∞ and −∞ < v < +∞ .

(A.6d)
Finally, we have that

u ·+ (−v) ≤ 0 ⇐⇒ u ≤ v ⇐⇒ 0 ≤ v u (−u) , (A.6e)
u ·+ (−v) ≤ w ⇐⇒ u ≤ v u w ⇐⇒ u ·+ (−w) ≤ v , (A.6f)
w ≤ v u (−u) ⇐⇒ u ·+ w ≤ v ⇐⇒ u ≤ v u (−w) . (A.6g)

A.3 Background on Fenchel-Moreau conjugacy with re-
spect to a coupling

Let be given two sets U and V . Consider a coupling function c : U × V → [−∞,+∞]. We
also use the notation U c↔ V for a coupling, so that

U c↔ V ⇐⇒ c : U × V → [−∞,+∞] . (A.7)

Definition A.4. The Fenchel-Moreau conjugate of a function f : U → [−∞,+∞], with
respect to the coupling c in (A.7), is the function f c : V → [−∞,+∞] defined by

f c(v) = sup
u∈U

(
c(u, v) ·+

(
−f(u)

))
, ∀v ∈ V . (A.8)

We associate with the coupling c the coupling c′ : V × U → [−∞,+∞] defined by c′(v, u) =
c(u, v). The Fenchel-Moreau biconjugate is the function f cc′ : U → [−∞,+∞] defined by

f cc
′
(u) = (f c)c

′
(u) = sup

v∈V

(
c(u, v) ·+

(
−f c(v)

))
, ∀u ∈ U . (A.9)

The following property is well known.
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Proposition A.5. For any function f : U → [−∞,+∞], we have that

f cc
′
(u) ≤ f(u) . (A.10)

Proof. We prove (A.10) as follows.

f cc
′
(u) ·+

(
−f(u)

)
= sup

v∈V

(
c(u, v) ·+

(
−f c(v)

))
·+
(
−f(u)

)
(by (A.9) and (A.4e))

= sup
v∈V

((
c(u, v) ·+

(
−f c(v)

))
·+
(
−f(u)

))
(by (A.4e))

= sup
v∈V

(
c(u, v) ·+

(
−f c(v)

)
·+
(
−f(u)

))
(by associativity of ·+)

= sup
v∈V

(
c(u, v) ·+

(
−f(u)

)
·+
(
−f c(v)

))
(by commutativity of ·+)

≤ sup
v∈V

(
sup
u∈U

(
c(u, v) ·+

(
−f(u)

))
·+
(
−f c(v)

))
(by (A.4b))

= sup
v∈V

(
f c(v) ·+

(
−f c(v)

))
(by (A.8))

≤ 0 . (by (A.4d))

We have obtained that f cc′(u) ·+
(
−f(u)

)
≤ 0. Now, using (A.6e), we obtain (A.10). This

ends the proof.

Definition A.6. • Let u ∈ U . We say that the function f : U → R is c-convex in u, if

f cc
′
(u) = f(u) . (A.12)

• We say that the function f is c-convex on U ′ ⊂ U if f is c-convex in u′ , ∀u′ ∈ U ′.

• We say that the function f is c-convex if f is c-convex on U .

The following properties are easy to establish.

Proposition A.7. For any family {fu}u∈U of functions fu : U → [−∞,+∞], we have that(
inf
u∈U

fu
)c

(u) = sup
u∈U

f cu(u) (A.13a)

−
(

inf
u∈U

fu
)c

(u) = inf
u∈U

(
−f cu(u)

)
. (A.13b)

We also define the c-uppersubgdifferential.

Definition A.8. Let f : U → R. Then its c-uppersubdifferential ∂cf(u) ⊂ V at the point
u ∈ U , is defined by

v ∈ ∂c f(u) ⇐⇒ f(u) = c(u, v) ·+ (−f c(v)) . (A.14)
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